Дом, семья, быт

Найти проекции силы действующей на раму. В какую сторону направлена реакция стержня с шарнирным крепление концов

В тех случаях, когда на тело действует более трех сил, а также когда неизвестны направления некоторых сил, удобнее при решении задач пользоваться не геометрическим, а аналитическим условием равновесия, которое основано на методе проекций.

Проекцией силы на ось называется отрезок оси, заключенный между двумя перпендикулярами, опущенными на ось из начала и конца вектора силы.

Пусть даны координатные оси х, у , сила Р, приложенная в точке А и расположенная в плоскости координатных осей.

Проекциями силы Р на оси будут отрезки аЬ и а"Ь". Обозначим эти проекции соответственно Р х и Р у . Тогда

Р Х = Р cos(x); Р у = Рsin(x).

Проекция силы на ось есть величина алгебраическая, которая может быть положительной или отрицательной, что устанавливается по направлению проекции. За направление проекции примем направление от проекции начала к проекции конца вектора силы.

Установим следующее правило знаков: если направление проекции силы на ось совпадает с положительным направлением оси, то эта проекция считается положительной, и наоборот.

Если вектор силы параллелен оси , то он проецируется на эту ось в натуральную величину .

Если вектор силы перпендикулярен оси, то его проекция на эту ось равна нулю Зная две проекции Р х и Р у , из треугольника ЛВС определяем модуль и направление вектора силы Р по следующим формулам:

Р = у /Р* + Р*, направляющий тангенс угла между вектором силы Р и осью х 1 ё а = Р у /Р х.

Отметим, что силу Р можно представить как равнодействующую двух составляющих сил Р х и Р , параллельных осям координат (рис. 2.3). Составляющие Р х и Р у и проекции Р х и Р у принципиально отличны друг от друга, так как составляющая есть величина векторная, а проекция -- величина алгебраическая; но проекции силы на две взаимно перпендикулярные оси х и у и модули составляющих той же силы соответственно численно равны, когда сила разлагается по двум взаимно перпендикулярным направлениям, параллельным осям х и у.

Очевидно, что, согласно третьему закону Ньютона (аксиома взаимодействия), внутренние силы, действующие в сечении оставшейся и отброшенной частей тела, равны по модулю, но противоположны по направлению. Таким образом, рассматривая равновесие любой из двух частей рассеченного тела, мы получим одно и то же значение внутренних сил, однако выгоднее рассматривать ту часть тела, для которой уравнения равновесия проще.

1. растяжение; эту деформацию испытывают, например, канаты, тросы, цепи, шток протяжного станка;

2. сжатие; на сжатие работают, например, колонны, кирпичная кладка, пуансоны штампов;

3. сдвиг; деформацию сдвига испытывают заклепки, болты, шпонки, швы сварных соединений. Деформацию сдвига, до- веденную до разрушения материала, называют срезом. Срез возникает, например, при резке ножницами или штамповке деталей из листового материала;

4. кручение; на кручение работают валы, передающие мощность при вращательном движении. Обычно деформация кручения сопровождается другими деформациями, например изгибом;

5. изгиб; на изгиб работают балки, оси, зубья зубчатых колес и другие элементы конструкций.

Очень часто элементы конструкций подвергаются действию нагрузок, вызывающих одновременно несколько основных деформаций. Так, например, в теоретической механике мы рассмотрели усилия, действующие на колесо червячной передачи. Очевидно, что в этом случае возникают следующие деформации вала червячного колеса:

Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука (1635 -- 1703).

Закон Гука при растяжении и сжатии справедлив лишь в определенных пределах нагружения и формулируется так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению.

Коэффициент пропорциональности Е характеризует жесткость материала, т.е. его способность сопротивляться упругим деформациям растяжения или сжатия, и называется модулем продольной упругости или модулем упругости первого рода.

Модуль упругости и напряжение выражаются в одинаковых единицах:

[Ј] = [а]/ = Па.

Значения Е, МПа, для некоторых материалов:

Чугун (1,5...1,6) 10 5

Сталь (1,96...2,16) 10 5

Медь (1,0...1,3)10 5

Сплавы алюминия (0,69...0,71) 10 5

Дерево (вдоль волокон) (0,1...0,16) 10 5

Текстолит (0,06...0,1)10 5

Капрон (0,01... 0,02) 10 5

Если в формулу закона Гука подставим выражения a = N/A, 8 = А///, то получим

Произведение ЕА, стоящее в знаменателе, называется жесткостью сечения при растяжении и сжатии; оно характеризует одновременно физико-механические свойства материала и геометрические размеры поперечного сечения бруса.

Эта формула читается так: абсолютное удлинение или укорочение прямо пропорционально продольной силе, длине и обратно пропорционально жесткости сечения бруса.

Отношение называется жесткостью бруса при растяжении или сжатии.

Приведенные выше формулы закона Гука применимы только для брусьев или их участков постоянного поперечного сечения, изготовленных из одного материала и при постоянной продольной силе.

Для бруса, имеющего несколько участков, отличающихся материалом, размерами поперечного сечения, продольной силой, изменение длины всего бруса равно алгебраической сумме удлинений и укорочений отдельных участков.

Диаграмма растяжения низкоуглеродистой стали представлена на рис. 19.6. Эта диаграмма имеет следующие характерные точки.

Точка А практически соответствует и другому пределу, который называется пределом упругости.

Пределом упругости а уп называется то наибольшее напряжение, до которого деформации практически остаются упругими.

Точка С соответствует пределу текучести.

Пределом текучести а т называется такое напряжение, при котором в образце появляется заметное удлинение без увеличения нагрузки.

При достижении предела текучести поверхность образца становится матовой, так как на ней появляется сетка линий Людерса-Чернова, наклоненных к оси под углом 45°.

Эти линии впервые были описаны в 1859 г. немецким металлургом Людерсом и независимо от него в 1884 г. русским металлургом Д.К. Черновым (1839--1921), предложившим использовать их при экспериментальном изучении напряжений в сложных деталях.

Предел текучести является основной механической характеристикой при оценке прочности пластичных материалов. Точка В соответствует временному сопротивлению или пределу прочности.

Временным сопротивлением а в называется условное напряжение, равное отношению максимальной силы, которую выдерживает образец, к первоначальной площади его поперечного сечения (для стали СтЗ а в 400 МПа).

При достижении временного сопротивления на растягиваемом образце образуется местное сужение -- шейка, т. е. начинается разрушение образца.

В определении временного сопротивления говорится об условном напряжении, так как в сечениях шейки напряжения будут больше.

Пределом прочности а пч называется временное сопротивление образца, разрушающегося без образования шейки. Предел прочности является основной механической характеристикой при оценке прочности хрупких материалов.

Точка И соответствует напряжению, возникающему в образце в момент разрыва во всех поперечных сечениях, кроме сечений шейки.

Точка М соответствует напряжению, возникающему в наименьшем поперечном сечении шейки в момент разрыва. Это напряжение можно назвать напряжением разрыва.


Пусть линия действия силы F лежит в плоскости OXY (рис. 1.25).

По правилу параллелограмма разложим эту силу на составляющие силы F ОХ, F OY по координатным осям OX и OY. Силы F OX , F OY называют компонентами силы F по координатным осям OX и OY. Очевидно векторное равенство

F = F OX + F OY .

Спроецируем компоненты F OX , F OY силы F на координатные оси и получим скалярные величины F OX , F OY , которые называют проекциями силы на оси OX и OY .

Компоненты силы и её проекции на координатные оси связаны равенствами: F OX = i ×F OX ; F OY = j ×F OY .

Проекция силы на ось скалярная величина, равная взятой со знаком плюс или минус длине отрезка, заключённого между проекциями на ось начала и конца силы.

Из определения следует, что проекции данной силы на любые параллельные оси равны друг другу: F OX = F O 1 X 1 , F OY = F O 1 Y 1 , где F O 1 X 1 , F O 1 Y 1 – проекции силы F на координатные оси системы отсчёта O 1 X 1 Y 1 .


Пусть в пространстве в системе отсчёта OXYZ задана сила F , (рис. 1.26).

Используя правило параллелепипеда, разложим силу F на компоненты F OX , F OY , F OZ . По правилу сложения векторов справедливо равенство

F = F OX + F OY + F OZ .

Компоненты F OX , F OY , F OZ силы F связаны с их проекциями F OX , F OY , F OZ на координатные оси соотношениями: F OX = i ×F OX ; F OY = j ×F OY ; F OZ = k ×F OZ . Следовательно, справедливо равенство

F = i ·F OX + j ·F OY + k ·F OZ .

Последнее равенство представляет собой формулу разложения силы на составляющие силы по координатным осям .

Проекция силы на координатную ось равна произведению модуля силы на косинус угла, составленного направлениями силы и оси.

F OX = F×cos(F , i ); F OY = F×cos(F , j ); F OZ = F×cos(F , k ).

Модуль силы через её проекции определяют по формуле

Направляющие косинусы , используемые для определения направления силы, находят по формулам:

cos(F , i ) = F OX /F; cos(F , j ) = F OY /F; cos(F , k ) = F OZ /F.

Если рассматривается сила, лежащая в плоскости OXY, то применяются формулы:

F = F OX + F OY ;

;

cos(F , i ) = F OX /F; cos(F , j ) = F OY /F.


При определении проекции силы на ось возможны следующие частные случаи (рис. 1.27).

Анализ частных случаев определения проекции силы на ось позволяет сделать следующие выводы: 1) если сила и ось направлены в одну полуплоскость, то проекция силы на ось положительна; 2) если сила и ось направлены в разные полуплоскости, то проекция силы на ось отрицательна; 3) если сила и ось взаимно перпендикулярны, то проекция силы на ось равна нулю; 4) если сила и ось параллельны, то сила проецируется на ось в натуральную величину с соответствующим знаком.


В инженерной практике принято использовать заданный угол и выражать через него проекции силы на оси (рис. 1.28).

Проекцией силы на плоскость OXY называется вектор F OX Y , заключенный между проекциями начала и конца силы F на эту плоскость (рис. 1.29).

Таким образом, в отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная , так как она характеризуется не только модулем, но и направлением по плоскости OXY. По модулю F О X Y = F·cos(g), где g – угол между направлением силы F и её проекцией F OX Y ,


В некоторых случаях для нахождения проекции силы на ось бывает удобнее найти сначала её проекцию на плоскость, в которой эта ось лежит, а затем найденную проекцию силы на плоскость спроецировать на данную ось. Тогда:

F OX = F OXY ·sin(α) = F·cos(g)·sin(α);

F OY = F OXY ·cos(α) = F·cos(g)·cos(α);

Проекция силы на ось определяется отрезком оси, отсекаемым

перпендикулярами, опущенными на ось из начала и конца вектора (рис. 3.1).

Величина проекции силы на ось равна произведению модуля си­лы на косинус угла между вектором силы и положительным напра­влением оси. Таким образом, проекция имеет знак: положительный при одинаковом направлении вектора силы и оси и отрицательный при направлении в сторону отрицательной полуоси (рис. 3.2).


Проекция силы на две взаимно перпендикулярные оси (рис. 3.3).


Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. лекция.. тема основные понятия и аксиомы статики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи теоретической механики
Теоретическая механика - наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по от

Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания систе­мы сил, эквивалентной нулю) (рис. 1.3). Р,=Р2 Р,=Р.

Следствие из второй и третьей аксиом
Силу, действующую на твер­дое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела - тела, перемещение которых не ограничено.

Жесткий стержень
На схемах стержни изображают толсто сплошной линией (рис. 1.9). Стержень може

Неподвижный шарнир
Точка крепления пере­мещаться не может. Стер­жень может свободно повора­чиваться вокруг оси шарни­ра. Реакция такой опоры про­ходит через ось шарнира, но

Плоская система сходящихся сил
Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (вис. 2.2).

Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если

Решение задач на равновесие геометрическим способом
Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим). Порядок решения задач:

Решение
1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5а). Определяем возможные направления реакций связе

Сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: Усл

Пара сил, момент пары сил
Парой сил называется система двух сил, равных по модулю, параллельных и направлен­ных в разные стороны. Рассмотрим систему сил (Р; Б"), образую­щих пару.

Момент силы относительно точки
Сила, не проходящая через точку крепления тела, вызывает вра­щение тела относительно точки, поэтому действие такой силы на тело оценивается моментом. Момент силы отн

Теорема Пуансо о параллельном переносе сил
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Расположенных сил
Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произ­вольно вы

Влияние точки приведения
Точка приведения выбрана произвольно. При изменении поло­жения точки приведения величина главного вектора не изменится. Величина главного момента при переносе точки приведения из­менится,

Плоской системы сил
1. При равновесии главный вектор системы равен нулю. Аналитическое определение главного вектора приводит к выводу:

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 7.1 а). MOO

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 7.2

Пространственная сходящаяся система сил
Пространственная сходящаяся система сил - система сил, не лежащих в одной плоскости, линии действия которых пересе­каются в одной точке. Равнодействующую пространственной системы си

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Центр тяжести однородных плоских тел
(плоских фигур) Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V =

Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии. Центр тяжести стержня находится на середине высоты. Поло­жения центров тяжести простых геометрических фигур могут

Кинематика точки
Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении.Знать способы задания движения точки (естественный и координатный). Знать обозначения, едини

Пройденный путь
Путь измеряется вдоль траектории в направлении движения. Обозначение - S, единицы измерения - метры. Уравнение движения точки: Уравнение, определяющ

Скорость движения
Векторная величина, характеризующая в данный момент бы­строту и направление движения по траектории, называется скоро­стью. Скорость - вектор, в любой момент направленный по к

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из точки М1

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 10.1 а)

Равнопеременное движение
Равнопеременное движение - это движение с постоянным ка­сательным ускорением: at = const. Для прямолинейного равнопеременного движения

Поступательное движение
Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2). При

Вращательное движение
При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси. Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω =const Уравнение (закон) равномерного вращения в данном случае име­ет вид:

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки A , расположенной на расстоянии RA от оси вращения (рис. 11.6, 11.7). Путь

Решение
1. Участок 1 - неравномерное ускоренное движение, ω = φ’ ; ε = ω’ 2. Участок 2 - скорость постоянна - движение равномерное, . ω = const 3.

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Поступа­тельное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное от­носительно этого полюса. Разложение используют для опред

Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Аксиомы динамики
Законы динамики обобщают результаты многочисленных опытов и наблюдений. Законы динамики, которые принято рассматривать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были и

Понятие о трении. Виды трения
Трение - сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел воз­никает трение скольжения, при качении - трение качения. Природа сопро

Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения. Обычно считают грунт мягче колеса, тогда в основном дефор­мируется грунт, и

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Сила инерции
Инертность - способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел. Сила инерции - сила, возникающая при разгоне или торможе­нии тел

Решение
Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу

Работа равнодействующей силы
Под действием системы сил точка массой т перемещается из положения М1 в положение M 2 (рис. 15.7). В случае движения под действием системы сил пользуютс

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности. Мощность - работа, выполненная в единицу времени:

Мощность при вращении
Рис. 16.2 Тело движется по дуге радиуса из точки М1 в точку М2 М1М2 = φr Работа силы

Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнитель

Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv. Вектор количества движения совпадает по

Теорема об изменении кинетической энергии
Энергией называется способность тела совершать механиче­скую работу. Существуют две формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия,

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как механическая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Оz с угловой скоростью

Напряжения
Метод сечений позволяет определить величину внутреннего си­лового фактора в сечении, но не дает возможности установить за­кон распределения внутренних сил по сечению. Для оценки прочно­сти н

Внутренние силовые факторы, напряжения. Построение эпюр
Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях. Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения

Продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения. Участком нагружения с

Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке опре­деления осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1). Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать получе

Центробежный момент инерции
Центробежным моментом инерции сечения называется взятая ковсей площади сумма произведений элементарных площадок на обе координаты:

Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей пло­щади сумма произведений элементарных площадок на квадрат их расстояния

Полярный момент инерции сечения
Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей площади сумма произве­дений элементарных площадок на квадрат их расстояния до этой точки:

Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2) Представим прямо

Полярный момент инерции круга
Для круга вначале вычисляют поляр­ный момент инерции, затем - осевые. Представим круг в виде совокупности бесконечно тонких колец (рис. 25.3).

Деформации при кручении
Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ,

Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпен- дикулярное продольной оси, после деформацииостается плоским и перпендикулярным продольной оси.

Внутренние силовые факторы при кручении
Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент. Внешними нагрузками также являются две про

Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Напряжения при кручении
Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после Рис. 27.1а деформации (рис. 27.1а). Поп

Максимальные напряжения при кручении
Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности. Определим максимальное напряж

Виды расчетов на прочность
Существует два вида расчета на прочность 1. Проектировочный расчет - определяется диаметр бруса (вала) в опасном сечении:

Расчет на жесткость
При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

Основные определения
Изгибом называется такой вид нагружения, при котором в по­перечном сечении бруса возникает внутренний силовой фактор -изгибающий момент. Брус, работающий на

Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения вну­тренних силовых факторов пользуемся методом с

Изгибающих моментов
Поперечная сила в сече­нии считается положитель­ной, если она стремится раз­вернуть се

Дифференциальные зависимости при прямом поперечном изгибе
Построение эпюр поперечных сил и изгибающих моментов су­щественно упрощается при использовании дифференциальных зави­симостей между изгибающим моментом, поперечной силой и интен­сивностью равномерн

Методом сечения Полученное выражение можно обобщить
Поперечная сила в рассматриваемом сечении равна алгебраической сумме всех сил, действующих на балку до рассматриваемого сечения: Q = ΣFi Поскольку речь идет

Напряжения
Рассмотрим изгиб балки, защемленной справа и нагруженной сосредоточенной силой F (рис. 33.1).

Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальны­ми и касательными напряжениями, возникающими на всех площад­ках (сечениях), проходящих через данную точку. Обычно достаточ­но определить напр

Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным напра­влениям и в различных плоскостях, проходящих через точку, опре­деляют деформированное состояние в этой точке. Сложное деформи

Расчет круглого бруса на изгиб с кручением
В случае расчета круглого бруса при действии изгиба и кру­чения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих слу­чаях возника

Понятие об устойчивом и неустойчивом равновесии
Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под дей

Расчет на устойчивость
Расчет на устойчивость заключается в определении допускае­мой сжимающей силы и в сравнении с ней силы действующей:

Расчет по формуле Эйлера
Задачу определения критической силы математиче­ски решил Л. Эйлер в 1744 г. Для шарнирно закрепленного с обеих сторон стержня (рис. 36.2) формула Эйлера имеет вид

Критические напряжения
Критическое напряжение - напряжение сжатия, соответству­ющее критической силе. Напряжение от сжимающей силы определяется по формуле

Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих де­формаций. Таким образом, критическое напряжение должно быть меньше предела упругости материала. Пред

Перейдем к рассмо­трению аналитического (численного) метода решения задач статики. Этот метод основывается на понятии о проекции силы на ось. Как и для всякого другого вектора, проекцией силы на ось называется скалярная величина, равная взятой с соответствующим знаком длине отрезка, заключенного между проекциями начала и конца силы. Проекция имеет знак плюс, если перемещение от ее начала к концу происходит в положительном направлении оси, и знак минус - если в отрицательном. Из определения следует, что проек­ции данной силы на любые параллельные и одинаково направлен­ные оси равны друг другу. Этим удобно пользоваться при вычисле­нии проекции силы на ось, не лежащую в одной плоскости с силой.

Рис. 1

Обозначать проекцию силы на ось Ох будем символом F x . Тогда для сил, изображенных на рис.1, получим:

Но из чертежа видно, что

Следовательно,

т. е. проекция силы на ось равна произведению модуля силы на косинус угла между направлением силы и положительным на­правлением оси. При этом проекция будет положительной, если угол между направлением силы и положительным направлением оси - острый, и отрицательной, если этот угол - тупой; если сила перпен­дикулярна к оси, то ее проекция на ось равна нулю.

Рис.2

Проекцией силы на плоскость Оху называется вектор , заключенный между проекциями начала и конца силы на эту плоскость (рис. 2). Таким образом, в отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная, так как она характеризуется не только своим чис­ленным значением, но и направлением в плоскости Оху . По модулю , где - угол между направ­лением силы и ее проекции .

В некоторых случаях для нахож­дения проекции силы на ось бывает удобнее найти сначала ее проекцию на плоскость, в которой эта ось ле­жит, а затем найденную проекцию на плоскость спроектировать на данную ось.

Например, в случае, изображенном на рис. 2, найдем таким способом, что

Геометрический способ сложения сил.

Решение многих задач механики связано с известной из векторной алгебры операцией сложения векторов и, в частности, сил. Величину, равную геометрической сумме сил какой-нибудь системы, будем называть главным вектором этой системы сил. Понятие о геометрической сумме сил не следует смешивать с понятием о равнодействующей, для многих систем сил, как мы увидим в дальнейшем, равнодействующей вообще не существует, геометрическую же сумму (главный вектор) можно вычислить для любой системы сил.

Геометрическая сумма (главный вектор) любой системы сил определяется или последовательным сло­жением сил системы по правилу параллелограмма, или построением силового многоугольника. Второй способ является более простым и удобным. Для нахождения этим способом суммы сил (рис. 3, a ), откладываем от произвольной точки О (рис. 3, б ) век­тор Oa , изображающий в выбранном масштабе cилу F 1 , от точки a откладываем вектор , изображающий силу F 2 , от точки b откла­дываем вектор bc , изображающий силу F 3 и т. д.; от конца m пред­последнего вектора откладываем вектор mn , изображающий силуF n .Соединяя начало первого вектора с концом последнего, получаем вектор , изображающий геометрическую сумму или главный вектор слагаемых сил:

От порядка, в котором будут откладываться векторы сил, модуль и направление не зависят. Легко видеть, что проделанное по­строение представляет собою результат последовательного приме­нения правила силового тре­угольника.

Рис.3

Фигура, построенная на рис. 3,б , называется силовым (в общем случае векторным) многоугольником. Таким обра­зом, геометрическая сумма или главный вектор несколь­ких сил изображается замы­кающей стороной силового многоугольника, построенно­го из этих сил (правило сило­вого многоугольника). При построении векторного многоугольника следует помнить, что у всех слагаемых векторов стрелки должны быть направлены в одну сторону (по обводу многоугольника), а у вектора - в сторону противоположную.

Равнодействующая сходящихся сил. При изучении статики мы будем последовательно переходить от рассмотрения более простых систем сил к более сложным. Начнем с рассмотрения си­стемы сходящихся сил.

Сходящимися называются силы, линии дей­ствия которых пересекаются в одной точке, называемой центром системы (см. рис. 3, а ).

По следствию из первых двух аксиом статики система сходящихся сил, действующих на абсолютно твердое тело, эквивалентна системе сил, приложенных в одной точке (на рис. 3, а в точке А ).

Последовательно применяя аксиому параллелограмма сил, прихо­дим к выводу, что система сходящихся сил имеет равнодей­ствующую, равную геометрической сумме (главному вектору) этих сил и приложенную в точке их пересечения. Следовательно, если силы сходятся в точке A (рис. 3, а ), то сила, равная главному вектору , найденному построением силового мно­гоугольника, и приложенная в точке А , будет равнодействующей этой системы сил.

Примечания.

1. Результат графического определения равнодействующей не изменится, если силы суммировать в другой последовательности, хотя при этом мы получим другой силовой многоугольник - отличный от первого.

2. Фактически силовой многоугольник, составленный из векторов сил заданной системы, является ломаной линией, а не многоугольником в привычном смысле этого слова.

3. Отметим, что в общем случае этот многоугольник будет пространственной фигурой, поэтому графический метод определения равнодействующей удобен только для плоской системы сил.

Равновесие системы сходящихся сил.

Из законов меха­ники следует, что твердое тело, на которое действуют взаимно уравновешенные внешние силы, может не только находиться в покое, но и совершать движение, которое мы назовем движением «по инер­ции». Таким движением будет, например, поступательное равномерное и прямолинейное движение тела.

Отсюда получаем два важных вывода:

1) Условиям равновесия статики удовлетворяют силы, действующие как на покоящееся тело, так и на тело, движущееся «по инерции».

2) Уравно­вешенность сил, приложенных к свободному твердому телу, является необходимым, но не достаточным условием равновесия (покоя) самого тела; в покое тело будет при этом находиться лишь в том случае, если оно было в покое и до момента приложения к нему уравнове­шенных сил.

Для равновесия приложенной к твердому телу системы сходя­щихся сил необходимо и достаточно, чтобы равнодействующая этих сил была равна нулю. Условия, которым при этом должны удовле­творять сами силы, можно выразить в геометрической или аналити­ческой форме.

1. Геометрическое условие равновесия. Так как равнодействующая сходящихся сил определяется как замыкающая сторона силового многоугольника, построенного из этих сил, то может обратиться в нуль тогда и только тогда, когда конец последней силы в многоугольнике совпадает с началом первой,т. е. когда много­угольник замкнется.

Следовательно, для равновесия системы, сходящихся сил необ­ходимо и достаточно, чтобы силовой многоугольник, построен­ный из этих сил, был замкнут.

2. Аналитические условия равновесия. Аналитически равнодействующая системы сходящихся сил определяется формулой

.

Так как под корнем стоит сумма положительных слагаемых, то R обратится в нуль только тогда, когда одновременно , т. е. когда действующие на тело силы будут удовлетворять равенствам:

Равенства выражают условия равновесия в аналитической форме: для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на каждую из трех координатных осей были равны нулю.

Если все действующие на тело сходящиеся силы лежат в одной плоскости, то они образуют плоскую систему сходящихся сил. В случае плоской системы сходящихся сил получим, очевидно, только два условия равновесия

Равенства выражают также необходимые условия (или уравнения) равновесия свободного твердого тела, находящегося под действием сходящихся сил.

Теорема о трех силах. Уравновешенная плоская система трех непараллельных сил является сходящейся.

Условие «плоская» в формулировке теоремы не является необходимым - можно убедиться, что любая уравновешенная система трех сил всегда будет плоской. Это следует из условий равновесия произвольной пространственной системы сил, которые будут рассмотрены далее.

Пример 1. На рис.4 показаны три силы. Проекции сил на оси х, у, z очевидны:

Рис.4

Рис. 2.4.
А чтобы найти проекцию силы на ось х нужно использовать пра­вило двойного проектирования .

Проектируем силу сначала на плос­кость х Оу , в которой расположена ось (рис.4), получим вектор , величиной а затем его проектируем на ось х: .

Аналогично действуя, найдём проекцию на ось у : .

Проекция на ось z находится проще: .

Нетрудно убе­диться, что проекции сил на ось V равны:

При определении этих проекций удобно воспользоваться рис.5, видом сверху на распо­ложение сил и осей.

Рис.5

Вернёмся к системе сходящихся сил (рис. 6). Проведём оси координат с началом в точке пересечения линий действия сил, в точке О .

Мы уже знаем, что равнодействующая сил . Спроектируем это векторное равенство на оси. Получим проек­ции равнодействующей на оси x , y , z :

Они равны алгебраическим сум­мам проекций сил на соответствующие оси. А зная проекции равнодействую­щей, можно определить и величину её как диагональ прямоугольного парал­лелепипеда или

Направление вектора найдём с помощью направляющих косинусов (рис.6):

Рис.6

Пример 2. На шар, вес которого Р, лежащий на горизонтальной плоско­сти и привязанный к ней нитью АВ , действует сила F (рис.7). Определим реакции связей.

Рис.7

Следует сразу заметить, что все задачи статики решаются по одной схеме, в определённом порядке.

Продемонстрируем ее на примере решения этой задачи.

1. Надо выбрать (назначить) объект равновесия – тело, равновесие ко­торого следует рассмот­реть, чтобы найти неиз­вестные.

В этой задаче, ко­нечно, объект равновесия – шар.

2. Построение рас­чёт­ной схемы. Расчётная схема – это объект рав­новесия, изображённый отдельно, свободным телом, без свя­зей, со всеми силами, действую­щими на него: реакциями и остальными силами.

Показываем реакцию нити и нормаль­ную реакцию плоскости – (рис.7). Кроме них на шар действуют заданные силы и .

3. Надо установить какая получилась система сил и составить со­ответствующие уравнения равновесия.

Здесь получилась система сходящихся сил, расположенных в плос­кости, для которой составляем два уравнения (оси можно проводить произвольно):

4. Решаем систему уравнений и находим неизвестные.

По условию задачи требовалось найти давление шара на плоскость. А мы нашли реакцию плоскости на шар. Но, по определению следует, что эти силы равны по величине, только давление на плоскость будет направлено в противоположную сторону, вниз.

Пример 3. Тело весом Р прикреплено к вертикальной плоскости тремя стержнями (рис.8). Определим усилия в стержнях.

Рис.8

В этой задаче объект равновесия – узел С вместе с гру­зом. Он нарисован отдельно с реак­циями, усилиями в стержнях и весом . Силы образуют пространственную систему сходящихся сил. Составляем три уравнения равно­весия:

Из первого уравнения следует: S 2 = S 3 . Тогда из третьего:

А из второго:

Когда мы направляли усилие в стержне от узла, от объекта равнове­сия, предполагали, что стержни работают на растяжение. Усилие в стержне CD получилось отрицательным. Это значит – стержень сжат. Так что знак усилия в стержне указывает как работает стержень: на растяжение или на сжатие.

Пример 4. Определить реакции стержней, соединенных шарниром В , если к нему подвешен груз весом Q (рис.9,а ).

Решение. В соответствии с предложенным выше планом выбираем тело, равновесие которого мы будем рассматривать. Этот выбор, в основном, определяется условиями задачи. Если в этой задаче рассмотреть равновесие подвешенного груза, то мы сумеем найти только силу натяжения нити, которая равна весу тела: T = Q (рис.9,б ).

Чтобы определить реакции стержней, рассмотрим равновесие точки В . Можно считать, что к ней посредством нити приложена активная сила Q и реакции отброшенных стержней S A и S C (рис.9,в ).

Решим эту задачу аналитически. Выбирая начало отсчета в точке В , составим уравнения равновесия, которые примут вид:

-S A cosα + S C cosβ = 0;

S A sinα + S C sinβ = Q .

Чтобы найти отсюда S C сложим полученные уравнения, умножив предварительно первое из них на sinα, а второе – на cosα:

S C (sinαcosβ + cosα sinβ) = Q cosα.

Отсюда следует, что S C = Q cosα/sin(α+β), а поскольку α и β в эти уравнения входят симметрично, то S A = Q cosβ/sin(α+β).

Для проверки правильности аналитического решения задачи воспользуемся графическим методом.

Треугольник, образованный из трех сил: Q , S A и S C должен быть замкнут, поэтому решение сводится к построению треугольника по известной стороне (Q ) и направлению двух других сторон(S A и S C ). Для этого нужно в масштабе построить вектор Q , а затем из начала и из конца этого вектора провести прямые, параллельные S A и S C до их пересечения (рис.9,г ).

Измерив длины найденных отрезков и пересчитав в масштабе, можно считать поставленную задачу решенной. Направление полученных векторов определяется из условия замкнутости силового многоугольника, то есть конец последнего вектора должен совпадать с началом первого.

Рис.9

Можно, впрочем, определить величину S A и S C и без масштабной линейки, если просто решить построенный треугольник.

С этой целью воспользуемся теоремой синусов:

откуда, заменяя синус дополнительного угла косинусом, получим:

То есть, результат графического решения совпадает с аналитическим, значит задача решена правильно.

Пример 5. Центр невесомого идеального блока удерживается при помощи двух стержней, соединенных шарнирно в точке В . Через блок переброшена нить, один конец которой закреплен, а к другому – подвешен груз весом Q (рис.10,а ). Определить реакции стержней, пренебрегая размерами блока.

Решение. Рассмотрим равновесие блока В , к которому приложены силы натяжения нитей Т 1 и Т 2 и реакции отброшенных стержней S A и S С , которые, как и в предыдущем примере мы считаем растянутыми (рис.10,б ).

Фактически в качестве активной силы выступает вес груза Q , который приложен к блоку с помощью нити, поэтому Т 1 = Q . По поводу силы Т 2 надо отметить, что идеальным – то есть без трения блоком называется механизм, который меняет направление силы натяжения нити, но не ее величину, поэтому Т 1 = Т 2 = Q .

Пренебрегая размерами блока, получим уравновешенную систему сходящихся сил, приложенных в точке В (рис.10,в ).

Определим реакции S A и S С аналитически. Отметим, что если в первое из аналитических уравнений равновесия входят оба неизвестных, то в уравнение ΣY i = 0 неизвестная реакция S С не войдет, поэтому имеет смысл начать решение задачи именно с этого уравнения:

S A cos30°+ Т 2 cos60°- Т 1 = 0.

Подставляя сюда значения тригонометрических функций и Т 1 = Т 2 = Q , получим:

Теперь вернемся к уравнению ΣX i = 0:

- S A cos60°+ Т 2 cos30°+ S С = 0,

Подставив найденное выше значение S A , получим:

При этом минус в последнем выражении означает, что стержень ВС не растянут, как мы предполагали, а сжат.

Для проверки полученного результата решим эту задачу графически. С этой целью от центра О последовательно откладываем в масштабе известные силы Т 1 и Т 2 , затем от начала первого и от конца последнего вектора проводим прямые, параллельные S A и S С до их пересечения (рис.10,г ).

Рис.10

Нетрудно видеть, что построенный силовой многоугольник имеет ось симметрии и |S A |=|S С |. При этом направление вектора S С на силовом многоугольнике противоположно первоначальному направлению, указанному на чертеже, то есть стержень ВС не растянут, а сжат.

Примечания.

1. В системе аналитических уравнений равновесия оси координат не обязательно должны быть взаимно перпендикулярными, поэтому, если в последнем примере выбрать ось Ох , совпадающую по направлению с силой Т 2 , мы получим систему уравнений, из которых неизвестные S A и S С находятся независимо одно от другого .

2. Впоследствии мы увидим, что аналитическое решение можно проверить не только с помощью графического решения, но и аналитически. Впрочем, для системы сходящихся сил изложенный метод решения задач является, по-видимому, оптимальным.

Теорема Вариньона. Если рассматриваемая плоская система сил приводится к равнодействующей, то момент этой равнодействующей относительно какой-либо точки равен алгебраической сумме моментов всех сил данной системы относительно той же самой точки. Предположим, что система сил приводится к равнодействующей R, проходящей через точку О. Возьмем теперь в качестве центра при­ведения другую точку O 1 . Главный момент (5.5) относительно этой точки равен сумме моментов всех сил в общем виде: M O1 =ƩM o1 (F k). В нашем случае, имеем M O1 =M Ol (R), так как главный момент для центра приведения О равен нулю (M O =0). Сравнивая соотношения, получаем M O1 (R)=ƩM Ol (F k); ч.т.д.

18.Аналитический способ задания силы Выберем систему координат Oxyz. Вектор можно построить, зная модульи углымежду вектором и соответствующими осями Задание этих величин и определяет силу. Точка приложения силы должна быть задана дополнительно координатами х, у, z. Кроме того, силу можно задавать проекциями на оси. Тогда

Эти формулы позволяют, зная проекции силы на оси координат найти ее модуль и углы с осями, т.е. определить силу. Зная проекции, можно построить вектор геометрически.

Для плоскости формулы (2.2.1) и (2.2.2) запишутся Построение в плоскости производится по 4-й аксиоме статики.

19. Опорные устройства балочных систем

Применяются следующие виды опор:

Шарнирно - подвижная опора

Здесь остается неизвестным числовое значение опорной реакции RA. Следует отметить, что опорная поверхность шарнирно-подвижной опоры может быть непараллельна оси балки (рис.б). Реакция RA в этом случае не будет перпендикулярна оси балки, так как она перпендикулярна опорной поверхности.

Шарнирно - неподвижная опора

Эта опора допускает поворот вокруг оси шарнира, но не допускает никаких линейных перемещений. В данном случае известна только точка приложения опорной реакции - центр шарнира; направлениеи значение опорной реакции неизвестны. Обычно вместо определения значения и направления (полной)реакции RA находят ее составляющие RAx и RAy.

Жесткая заделка (защемление)Такая опора не допускает ни линейных перемещений, ни поворота.Неизвестными в данном случае являются не только значение и направление реакции, но и точка ее приложения. Поэтому жесткую заделку заменяют силой реакции RA и парой сил с моментом MA.

Для определения опорной реакции следует найти три неизвестных: составляющие RAx и RAy опорной реакции по осям координат и реактивный момент MA.

20.Проекция силы на ось и на плоскость

Скалярная величина, равная взятой с соответствующим знаком длине отрезка, заключенного между проекциями начала и конца силы называется проекцией силы на ось.

Знак плюс проекция имеет, если перемещение от начала к концу происходит в положительном направлении оси, и знак минус если в отрицательном.

Таким образом, проекции данной силы на любые параллельные и одинаково направленные оси равны друг другу.

Проекция силы на ось Ох обозначается какTo есть проекция силы на ось равна произведению модуля силы на косинус угла между направлением силы и положительным направлением оси.

Если сила перпендикулярна оси, то ее проекция на эту ось равна нулю.

Проекцией силы на плоскость Оху называется вектор, заключенный между проекциями начала и конца силы F на эту плоскость (рис. 13).

Проекция силы на плоскость есть величина векторная и характеризуется как модулем, так и направлением в плоскости Оху. Модуль проекции силы на плоскость Оху выражается какТогда проекции на оси Ох и Оу:

21. разложение сил . Разложить данную силу на не­сколько составляющих - значит найти такую систему нескольких сил, для которой данная сила является равнодействующей. Эта задача является неопределенной и имеет однозначное решение лишь при задании дополнительных условий. Рассмотрим два частных случая:

а) разложение силы по двум заданным на­правлениям. Задача сводится к построению такого парал­лелограмма, у которого разлагаемая сила является диагональю, а стороны параллельны заданным направлениям

б)разложение силы по трем заданным на­правлениям. Если заданные направления не лежат в одной плоскости, то задача"является определенной и сводится к построе­нию такого параллелепипеда, у которого диагональ изображает заданную силу R, а ребра параллельны заданным направлениям. Способом разложения можно в простейших случаях пользовать­ся для определения сил давления на связи. Для этого действующую на тело (конструкцию) заданную силу надо разложить по направле­ниям реакции связей, так как согласно закону о действии и противо­действии сила давления на связь и реакция связи направлены вдоль одной и той же прямой.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении