Дом, семья, быт

Молекулярная масса: базовые принципы определения. Формула молекулярной массы Что такое молекулярный вес

Выраженная в атомных единицах массы . Численно равна молярной массе . Однако следует чётко представлять разницу между молярной массой и молекулярной массой, понимая, что они равны лишь численно и различаются по размерности.

Молекулярные массы сложных молекул можно определить, просто складывая молекулярные массы входящих в них элементов. Например, молекулярная масса воды (H 2 O) есть

M H 2 O = 2 M H + M O ≈ 2·1+16 = 18 а. е. м.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Молекулярный вес" в других словарях:

    МОЛЕКУЛЯРНЫЙ ВЕС - есть относительный вес молекулы вещества. Кроме возможности находиться в трех различных фазах (см. Аггрвгатное состояние) вещества обладают способностью распределяться одно в другом, образуя так наз. растворы. Согласно вант Гоффу (van t Hoff)… … Большая медицинская энциклопедия

    См. Молекулярная масса … Большой Энциклопедический словарь

    МОЛЕКУЛЯРНЫЙ ВЕС, термин, который ранее использовался для обозначения ОТНОСИТЕЛЬНОЙ МОЛЕКУЛЯРНОЙ МАССЫ … Научно-технический энциклопедический словарь

    молекулярный вес - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN molecular weightM … Справочник технического переводчика

    Молекулярный вес М в - Молекулярный вес, М. в. * малекулярная вага, М. в. * molecular weight or M. w. сумма атомных весов всех атомов, из которых состоит данная молекула. Часто отождествляется с терминами «молекулярная масса» (см.) и «относительная молекулярная масса»… … Генетика. Энциклопедический словарь

    МОЛЕКУЛЯРНЫЙ ВЕС - устарев шее и неправильное название молекулярной относительной (см.) … Большая политехническая энциклопедия

    То же, что молекулярная масса. * * * МОЛЕКУЛЯРНЫЙ ВЕС МОЛЕКУЛЯРНЫЙ ВЕС, см. Молекулярная масса (см. МОЛЕКУЛЯРНАЯ МАССА) … Энциклопедический словарь

В килограммах. Чаще пользуются безразмерной величиной М отн -относительной молекулярной массой: М отн =M x /D, где М х -масса x, выраженная в тех же единицах массы (кг, г или др.), что и D. Молекулярная масса характеризует среднюю массу с учетом изотопного состава всех элементов, образующих данное хим. соединение. Иногда молекулярную массу определяют для смеси разл. в-в известного состава, напр. для "эффективную" молекулярную массу можно принять равной 29.

Абс. массами удобно оперировать в области физики субатомных процессов и , где путем измерения энергии частиц, согласно теории относительности, определяют их абс. массы. В и хим. технологии необходимо применять макроскопич. единицы измерения кол-ва в-ва. Число любых частиц ( , электро нов или мысленно выделяемых в в-ве групп частиц, напр. Na + и Сl - в кристаллич. решетке NaCl), равное N А = 6,022 . 10 23 , составляет макроскопич. единицу кол-ва в-ва-моль. Тогда можно записать: М отн = M x . N A /(D . N A),T.е. относительная молекулярная масса равна отношению массы в-ва к N A D. Если в-во состоит из с между составляющими их , то величина M x . N A представляет собой м о л я рн у ю м а с с у этого в-ва, единицы измерения к-рой кг-моль (киломоль, кМ). Для в-в, не содержащих , а состоящих из , или радикалов, определяется ф о р-м у л ь н а я м о л я р н а я м а с с а, т.е. масса N A частиц, соответствующих принятой формуле в-ва (однако в СССР часто и в этом случае говорят о молекулярной массе, что неверно).

Ранее в использовали понятия , грамм-ион, теперь-моль , подразумевая под этим N A , и соотв. их молярные массы, выраженные в граммах или килограммах. Традиционно употребляют в качестве синонима термин "молекулярный (молярный) ", т. к. определение массы производится с помощью . Но, в отличие от , зависящего от географич. координат, масса является постоянным параметром кол-ва в-ва (при обычных скоростях движения частиц в условиях хим. р-ций), поэтому правильнее говорить "молекулярная масса".

Большое число устаревших терминов и понятий, касающихся молекулярной массы, объясняется тем, что до эры космич. полетов в не придавали значения различию между массой и , к-рое обусловлено разностью значений ускорения своб. падения на полюсах (9,83 м. с -2) и на экваторе (9,78 м. с -2); при расчетах силы тяжести () обычно пользуются средним значением, равным 9,81 м. с -2 . Кроме того, развитие понятия (как и ) было связано с исследованием макроскопич. кол-в в-ва в процессах их хим. () или физ. () превращений, когда не была разработана теория строения в-ва (19 в.) и предполагалось, что все хим. соед. построены только из и .

Методы определения. Исторически первый метод (обоснованный исследованиями С. Канниццаро и А. Авогадро) предложен Ж. Дюма в 1827 и заключался в измерении плотности газообразных в-в относительно водородного , молярная масса к-рого принималась первоначально равной 2, а после перехода к кислородной единице измерений молекулярных и атомных масс-2,016 г. След. этап развития эксперим. возможностей определения молекулярной массы заключался в исследовании и р-ров нелетучих и недиссоциирующих в-в путем измерения коллигативных св-в (т. е. зависящих только от числа растворенных частиц) - осмотич. (см. ), понижения , понижения точки замерзания ()и повышения точки ()р-ров по сравнению с чистым р-рителем. При этом было открыто "аномальное" поведение .

Понижение над р-ром зависит от молярной доли растворенного в-ва (): [(р - р 0)/р] = N, где р 0 -давление чистого р-рителя, р-давление над р-ром, N- молярная доля исследуемого растворенного в-ва, N = (т х /М х)/[(т х /М х) + (m 0 /M 0)], m x и М х -соотв. навеска (г) и молекулярная масса исследуемого в-ва, m 0 и М 0 -то же для р-рителя. В ходе определений проводят экстраполяцию к бесконечно разб. р-ру, т.е. устанавливают для р-ров исследуемого в-ва и для р-ров известного (стандартного) хим. соединения. В случае и используют зависимости соотв. Dt 3 = Кс и Dt к = Еc, где Dt 3 -понижение т-ры замерзания р-ра, Dt к - повышение т-ры р-ра, К и Е-соотв. криоскопич. и эбулиоскопич. постоянные р-рителя, определяемые по стандартному растворенному в-ву с точно известной молекулярной массой, с-моляльная исследуемого в-ва в р-ре (с = М х т х. 1000/m 0). Молекулярную массу рассчитывают по ф-лам: М х = т х К. 1000/m 0 Dt 3 или М х = т х Е. 1000/m 0 Dt к. Методы характеризуются достаточно высокой точностью, т.к. существуют спец. (т. наз. ), позволяющие измерять весьма малые изменения т-ры.

Для определения молекулярной массы используют также изотермич. р-рителя. При этом р-ра исследуемого в-ва вносят в камеру с насыщ. р-рителя (при данной т-ре); р-рителя конденсируются, т-ра р-ра повышается и после установления вновь понижается; по изменению т-ры судят о кол-ве выделившейся теплоты , к-рая связана с молекулярной массой растворенного в-ва. В т. наз. изопиестич. методах проводят изотермич. р-рителя в замкнутом объеме, напр. в Н-образном . В одном колене находится т. наз. р-р сравнения, содержащий известную массу в-ва известной молекулярной массы (молярная C 1), в другом-р-р, содержащий известную массу исследуемого в-ва (молярная С 2 неизвестна). Если, напр., С 1 > С 2 , р-ритель перегоняется из второго колена в первое, пока молярные в обоих коленах не будут равны. Сопоставляя объемы полученных изопиестич. р-ров, рассчитывают молекулярную массу неизвестного в-ва. Для определения молекулярной массыы можно измерять массу изопиестич. р-ров с помощью Мак-Бена, к-рые представляют собой две чашечки, подвешенные на пружинках в закрытом стеклянном ; в одну чашечку помещают исследуемый р-р, в другую-р-р сравнения; по изменению положения чашечек определяют массы изопиестич. р-ров и, следовательно, молекулярную массу исследуемого в-ва.

Осн. методом определения атомных и мол. масс летучих в-в является . Для исследования смеси соед. эффективно использование хромато-масс-спектромет-рии. При малой интенсивности пика мол.

МОЛЕКУЛЯРНЫЙ ВЕС (син. молекулярная масса ) - масса молекулы вещества, выраженная в углеродных единицах атомной массы (углеродная единица атомной массы - 1/12 массы атома изотопа углерода 12 C); наряду с атомными массами служит основой для всевозможных расчетов, выполняемых с помощью хим. формул и уравнений, в т. ч. расчетов, производимых в биохим. и клинико-диагностических лабораториях.

Если известна хим. формула вещества, то его М. в. может быть вычислен как сумма атомных весов (масс) атомов хим. элементов (см. Атомный вес), входящих в состав молекулы данного вещества. Напр., М. в. углекислого газа (CO 2) равен:

12,011 + 2 * 15,9994 = 44,0098.

Для веществ, находящихся в газообразном или растворенном состоянии, экспериментальные методы определения М. в. наиболее обоснованны. М. в. (М1) газа обычно определяют, измерив его относительную плотность D по газу, М. в. к-рого (М2) известен; тогда М1 = M2*D. М. в. газа можно также определить, если известна его нормальная плотность d, т. е. масса 1 л газа в граммах при давлении 760 мм рт. ст. и 0 °C. В этом случае М. в. газа равен M = 22,42*d.

Для определения М. в. растворенного вещества в таком растворителе, в к-ром это вещество не подвергается диссоциации или ассоциации, наиболее часто измеряют понижение температуры замерзания р-ра Δt (см. Криометрия), наблюдаемое при растворении а г исследуемого вещества в b г растворителя: М = (K*a*1000)/(Δt*b), где К - криометрическая (криоскопическая) постоянная растворителя.

М. в. растворенного вещества можно также определить, измерив осмотическое давление р-ра (см. Осмотическое давление). В этом случае M = (m*R*T)/p, где m - масса растворенного вещества в граммах, содержащаяся в 1 л р-ра, p - осмотическое давление в атм, T - температура в градусах по Кельвину и R - газовая постоянная в л*атм/моль*град. Этот метод с успехом применяется для определения М. в. белков, полисахаридов, нуклеиновых и других высокомолекулярных соединений (см.). М. в. белков и других биополимеров можно определить методом ультрацентрифугирования (см.).

В практике биохим., клин, и сан.-гиг. лабораторий для выполнения различного рода расчетов широко пользуются также единицей количества вещества, называемой молем.

Моль - это количество вещества, содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится атомов в 12 г изотопа углерода 12 C. Число молекул, атомов или других структурных единиц, содержащихся в одном моле любого вещества, называемое числом Авогадро, определено с большой точностью. Для практических расчетов его принимают равным

6,023*10 23 моль -1 .

Масса одного моля вещества, выраженная в граммах, численно равная М. в. вещества, называется мольной массой, или грамм-молекулой.

Библиография: Белки, под ред. Г. Нейрата и К. Бэйли, пер. с англ., т. 2, с. 276, М., 195 6: Гауровиц Ф. Химия и функция белков, пер. с англ., М., 1965; Ост-вальд-Лютер - Дру кер, Физикохимические измерения, пер. с нем., ч. 1, €. 294, Л., 1935.

МКТ - это просто!

«Ничто не существует, кроме атомов и пустого пространства …» - Демокрит
«Любое тело может делиться до бесконечности» - Аристотель

Основные положения молекулярно-кинетической теории (МКТ)

Цель МКТ - это объяснение строения и свойств различных макроскопических тел и тепловых явлений, в них протекающих, движением и взаимодействием частиц, из которых состоят тела.
Макроскопические тела - это большие тела, состоящие из огромного числа молекул.
Тепловые явления - явления, связанные с нагреванием и охлаждением тел.

Основные утверждения МКТ

1. Вещество состоит из частиц (молекул и атомов).
2. Между частицами есть промежутки.
3. Частицы беспорядочно и непрерывно движутся.
4. Частицы взаимодействуют друг с другом (притягиваются и отталкиваются).

Подтверждение МКТ:

1. экспериментальное
- механическое дробление вещества; растворение вещества в воде; сжатие и расширение газов; испарение; деформация тел; диффузия; опыт Бригмана: в сосуд заливается масло, сверху на масло давит поршень, при давлении 10 000 атм масло начинает просачиваться сквозь стенки стального сосуда;

Диффузия; броуновское движение частиц в жидкости под ударами молекул;

Плохая сжимаемость твердых и жидких тел; значительные усилия для разрыва твердых тел; слияние капель жидкости;

2. прямое
- фотографирование, определение размеров частиц.

Броуновское движение

Броуновское движение - это тепловое движение взвешенных частиц в жидкости (или газе).

Броуновское движение стало доказательством непрерывного и хаотичного (теплового) движения молекул вещества.
- открыто английским ботаником Р. Броуном в 1827 г.
- дано теоретическое объяснение на основе МКТ А. Эйнштейном в 1905 г.
- экспериментально подтверждено французским физиком Ж. Перреном.

Масса и размеры молекул

Размеры частиц

Диаметр любого атома составляет около см.


Число молекул в веществе

где V - объем вещества, Vo - объем одной молекулы

Масса одной молекулы

где m - масса вещества,
N - число молекул в веществе

Единица измерения массы в СИ: [m]= 1 кг

В атомной физике массу обычно измеряют в атомных единицах массы (а.е.м.).
Условно принято считать за 1 а.е.м. :

Относительная молекулярная масса вещества

Для удобства расчетов вводится величина - относительная молекулярная масса вещества.
Массу молекулы любого вещества можно сравнить с 1/12 массы молекулы углерода.

где числитель - это масса молекулы, а знаменатель - 1/12 массы атома углерода

Это величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса химического элемента

где числитель - это масса атома, а знаменатель - 1/12 массы атома углерода

Величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса каждого химического элемента дана в таблице Менделеева.

Другой способ определения относительной молекулярной массы вещества

Относительная молекулярная масса вещества равна сумме относительных атомных масс химических элементов, входящих в состав молекулы вещества.
Относительную атомную массу любого химического элемента берем из таблицы Менделеева!)

Количество вещества

Количество вещества (ν) определяет относительное число молекул в теле.

где N - число молекул в теле, а Na - постоянная Авогадро

Единица измерения количества вещества в системе СИ: [ν]= 1 моль

1 моль - это количество вещества, в котором содержится столько молекул (или атомов), сколько атомов содержится в углероде массой 0,012 кг.

Запомни!
В 1 моле любого вещества содержится одинаковое число атомов или молекул!

Но!
Одинаковые количества вещества для разных веществ имеют разную массу!


Постоянная Авогадро

Число атомов в 1 моле любого вещества называют числом Авогадро или постоянной Авогадро:

Молярная масса

Молярная масса (M) - это масса вещества, взятого в одном моле, или иначе - это масса одного моля вещества.

Масса молекулы
- постоянная Авогадро

Единица измерения молярной массы: [M]=1 кг/моль.

Формулы для решения задач

Эти формулы получаются в результате подстановки вышерассмотренных формул.

Масса любого количества вещества

МОЛЕКУЛЯРНАЯ МАССА,

сумма масс атомов, входящих в состав данной молекулы; выражается в атомных единицах массы (а. е. м.). Поскольку 1 а. е. м. (иногда называемая дальтон, D) равна 1 / 12 массы атома нуклида 12 С и в единицах массы составляет 1,66057 . 10 -27 кг, то умножение М. м. на 1,66057 . 10 -27 дает абс. массу молекулы в килограммах. Чаще пользуются безразмерной величиной М отн -относительной М. м.: М отн где М х -> масса молекулы x, выраженная в тех же единицах массы (кг, г или др.), что и D. М. м. характеризует среднюю массу молекулы с учетом изотопного состава всех элементов, образующих данное хим. соединение. Иногда М. м. определяют для смеси разл. в-в известного состава, напр. для воздуха "эффективную" М. м. можно принять равной 29.

Абс. массами молекул удобно оперировать в области физики субатомных процессов и радиохимии, где путем измерения энергии частиц, согласно теории относительности, определяют их абс. массы. В химии и хим. технологии необходимо применять макроскопич. единицы измерения кол-ва в-ва. Число любых частиц (молекул, атомов, электронов или мысленно выделяемых в в-ве групп частиц, напр. пар ионов Na + и Сl - в кристаллич. решетке NaCl), равное Авогадро постоянной N А = 6,022 . 10 23 , составляет макроскопич. единицу кол-ва в-ва-моль. Тогда можно записать: М отн = x . N A /(D . N A),T.е. относительная М. м. равна отношению массы моля в-ва к N A D. Если в-во состоит из молекул с ковалентными связями между составляющими их атомами, то величина x . N A представляет собой м о л я рн у ю м а с с у этого в-ва, единицы измерения к-рой кг-моль (киломоль, кМ). Для в-в, не содержащих молекул, а состоящих из атомов, ионов или радикалов, определяется ф о р-м у л ь н а я м о л я р н а я м а с с а, т. е. масса N A частиц, соответствующих принятой формуле в-ва (однако в СССР часто и в этом случае говорят о М. м., что неверно).

Ранее в химии использовали понятия грамм-молекула, грамм-атом, грамм-ион, теперь-моль молекул, моль атомов, моль ионов, подразумевая под этим N A молекул, атомов, ионов и соотв. их молярные массы, выраженные в граммах или килограммах. Традиционно употребляют в качестве синонима термин "молекулярный (молярный) вес", т. к. определение массы производится с помощью весов. Но, в отличие от веса, зависящего от географич. координат, масса является постоянным параметром кол-ва в-ва (при обычных скоростях движения частиц в условиях хим. р-ций), поэтому правильнее говорить "молекулярная масса".

Большое число устаревших терминов и понятий, касающихся М. м., объясняется тем, что до эры космич. полетов в химии не придавали значения различию между массой и весом, к-рое обусловлено разностью значений ускорения своб. падения на полюсах (9,83 м. с -2) и на экваторе (9,78 м. с -2); при расчетах силы тяжести (веса) обычно пользуются средним значением, равным 9,81 м. с -2 . Кроме того, развитие понятия молекулы (как и атома) было связано с исследованием макроскопич. кол-в в-ва в процессах их хим. (реакции) или физ. () превращений, когда не была разработана теория строения в-ва (19 в.) и предполагалось, что все хим. соед. построены только из атомов и молекул.

Методы определения. Исторически первый метод (обоснованный исследованиями С. Канниццаро и А. Авогадро) предложен Ж. Дюма в 1827 и заключался в измерении плотности газообразных в-в относительно водородного газа, молярная масса к-рого принималась первоначально равной 2, а после перехода к кислородной единице измерений молекулярных и атомных масс-2,016 г. След. этап развития эксперим. возможностей определения М. м. заключался в исследовании жидкостей и р-ров нелетучих и недиссоциирующих в-в путем измерения коллигативных св-в (т. е. зависящих только от числа растворенных частиц) - осмотич. давления (см. Осмометрия), понижения давления пара, понижения точки замерзания (криоскопия )и повышения точки кипения (эбулиоскопия )р-ров по сравнению с чистым р-рителем. При этом было открыто "аномальное" поведение электролитов.

Понижение давления пара над р-ром зависит от молярной доли растворенного в-ва (закон Рауля): [( р - р 0 )/р] = N, где р 0 -> давление пара чистого р-рителя, р- давление пара над р-ром, N- молярная доля исследуемого растворенного в-ва, N = ( т х / М х )/[( т х / М х ) + (m 0 /M 0)], x и М х -соотв. навеска (г) и М. м. исследуемого в-ва, m 0 и М 0 -то же для р-рителя. В ходе определений проводят экстраполяцию к бесконечно разб. р-ру, т. е. устанавливают для р-ров исследуемого в-ва и для р-ров известного (стандартного) хим. соединения. В случае криоскопии и эбулиоскопии используют зависимости соотв. Dt 3 = Кс и Dt к = Еc, где Dt 3 -понижение т-ры замерзания р-ра, Dt к - повышение т-ры кипения р-ра, К и Е- соотв. криоскопич. и эбулиоскопич. постоянные р-рителя, определяемые по стандартному растворенному в-ву с точно известной М. м., с-моляльная исследуемого в-ва в р-ре ( с = М х т х. 1000/m 0). М. м. рассчитывают по ф-лам: М х = т х К. 1000/m 0 Dt 3 или М х = т х Е. 1000/m 0 Dt к. Методы характеризуются достаточно высокой точностью, т. к. существуют спец. (т. наз. термометры Бекмана), позволяющие измерять весьма малые изменения т-ры.

Для определения М. м. используют также изотермич. перегонку р-рителя. При этом пробу р-ра исследуемого в-ва вносят в камеру с насыщ. паром р-рителя (при данной т-ре); пары р-рителя конденсируются, т-ра р-ра повышается и после установления равновесия вновь понижается; по изменению т-ры судят о кол-ве выделившейся теплоты испарения, к-рая связана с М. м. растворенного в-ва. В т. наз. изопиестич. методах проводят изотермич. перегонку р-рителя в замкнутом объеме, напр. в Н-образном сосуде. В одном колене сосуда находится т. наз. р-р сравнения, содержащий известную массу в-ва известной М. м. (молярная концентрация C 1), в другом-р-р, содержащий известную массу исследуемого в-ва (молярная концентрация С 2 неизвестна). Если, напр., С 1 > С 2 ,> р-ритель перегоняется из второго колена в первое, пока молярные концентрации в обоих коленах не будут равны. Сопоставляя объемы полученных изопиестич. р-ров, рассчитывают М. м. неизвестного в-ва. Для определения М. м. можно измерять массу изопиестич. р-ров с помощью весов Мак-Бена, к-рые представляют собой две чашечки, подвешенные на пружинках в закрытом стеклянном сосуде; в одну чашечку помещают исследуемый р-р, в другую-р-р сравнения; по изменению положения чашечек определяют массы изопиестич. р-ров и, следовательно, М. м. исследуемого в-ва.

Осн. методом определения атомных и мол. масс летучих в-в является масс-спектрометрия. Для исследования смеси соед. эффективно использование хромато-масс-спектромет-рии. При малой интенсивности пика мол. иона применяют эффузиометрич. приставки к масс-спектрометрам. Эффузио-метрич. способ основан на том, что скорость вытекания газа в из камеры через отверстие, диаметр к-рого значительно меньше среднего пути своб. пробега молекулы, обратно пропорциональна квадратному корню из М. м. в-ва; скорость вытекания контролируют по изменению давления в камере. М. м. летучих соед. определяют также методами газовой хроматографии с газовыми весами Мартина. Последние измеряют скорость перемещения газа в канале, соединяющем трубки, по к-рым текут газ-носитель и газ из хроматографич. колонки, что позволяет определять разницу плотностей этих газов, зависящую от М. м. исследуемого в-ва.

М. м. измеряют для идентификации хим. соед., для установления содержания отдельных нуклидов в соед., напр. в воде, используемой в атомных энергетич. установках, а также при исследовании и синтезе высокомол. соед., св-ва к-рых существенно зависят от их М. м. (см. Молекулярная масса полимера). Средние значения М. м. полимеров устанавливают с помощью перечисленных выше методов, основанных на коллигативных св-вах разбавленных р-ров, по числу двойных связей ("мягким" озонолизом) или функц. групп (методами функцион. анализа), а также по таким св-вам их р-ров, как , светорассеяние. Средние значения мол. масс полимеров высокой степени полимеризации определяют по их реологич. характеристикам.

Лит.: Рафиков С. Р., Павлова С. А., Твердохлебова И. И., Методы определения молекулярных весов и полидисперсности высокомолекулярныхсоединений, М., 1963; Полинг Л., Полинг П., Химия, пер. с англ., М., 1978; Вилков Л. В., Пентин Ю. А., Физические методы исследования в химии, М., 1987. Ю. А. Клячко.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "МОЛЕКУЛЯРНАЯ МАССА" в других словарях:

    Значение массы молекулы, выраженное в атомных единицах массы. Практически М. м. равна сумме масс входящих в неё атомов (см. АТОМНАЯ МАССА). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    - (молекулярный вес) масса молекулы, выраженная в атомных единицах массы. Практически равна сумме масс всех атомов, из которых состоит молекула. Величины молекулярной массы используются в химических, физических и химико технических расчетах … Большой Энциклопедический словарь

    - (масса моля), термин ранее использовался для обозначения ОТНОСИТЕЛЬНОЙ МОЛЕКУЛЯРНОЙ МАССЫ … Научно-технический энциклопедический словарь

    Молекулярная масса М м - Молекулярная масса, М. м. * малекулярная маса, М. м. * molecular mass or M. m. масса молекулы, не имеющая собственных единиц измерения, поэтому обычно в этом смысле используют термин «молекулярный вес» (см.) … Генетика. Энциклопедический словарь

    молекулярная масса - — Тематики биотехнологии EN molecular mass … Справочник технического переводчика

    Молекулярная масса - – относительная величина, отношение массы молекулы данного вещества к 1/12 части массы атома Изотопа углерода С12. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.] Рубрика термина: Общие термины… … Энциклопедия терминов, определений и пояснений строительных материалов

    молекулярная масса - santykinė molekulinė masė statusas T sritis Standartizacija ir metrologija apibrėžtis Molekulės vidutinės masės arba tiksliai apibrėžto medžiagos darinio masės ir nuklido ¹²C atomo masės 1/12 dalies dalmuo. atitikmenys: angl. molecular mass;… …

    молекулярная масса - santykinė molekulinė masė statusas T sritis Standartizacija ir metrologija apibrėžtis Molekulę sudarančių atomų santykinių atominių masių suma, skaitine verte lygi medžiagos molio masei. atitikmenys: angl. molecular mass; molecular weight;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    молекулярная масса - santykinė molekulinė masė statusas T sritis chemija apibrėžtis Molekulę sudarančių atomų santykinių atominių masių suma, skaitine verte lygi vieno medžiagos molio masei. atitikmenys: angl. molecular mass; molecular weight; relative molecular mass … Chemijos terminų aiškinamasis žodynas

    - (молекулярный вес), масса молекулы, выраженная в атомных единицах массы. Практически равна сумме масс всех атомов, из которых состоит молекула. Величины молекулярной массы используются в химических, физических и химико технологических расчётах. * … Энциклопедический словарь

Книги

  • Характеристики углеводородов. Анализ численных данных и их рекомендованные значения. Справочное издание , Ю. А. Лебедев , А. Н. Кизин , Т. С. Папина , И. Ш. Сайфуллин , Ю. Е. Мошкин , В настоящей книге представлены важнейшие численные характеристики ряда углеводородов, среди которых рассматриваются следующие физико-химические константы: молекулярная масса, температура… Категория: Химия Издатель: ЛЕНАНД , Производитель:

Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении