Дом, семья, быт

Чему равна сумма углов выпуклого n угольника. Выпуклый многоугольник. Смотреть что такое "Теорема о сумме углов многоугольника" в других словарях

Цель: Вывести формулу для нахождения суммы углов выпуклого многоугольника;

  • исследовать вопрос о сумме внешних углов многоугольника, взятых по одному при каждой вершине;
  • формировать положительную мотивацию к познавательной деятельности;
  • развивать логическое мышление;
  • развивать внимание, наблюдательность, умение анализировать чертеж;
  • формировать умение применять полученные знания для решения задач;
  • развивать коммуникативную культуру учащихся.

Ход урока

Великий русский ученый, гордость Земли Русской,

Михайло Васильевич Ломоносов, сказал: “ Неусыпный труд препятствия преодолевает”. Я надеюсь, что сегодня на уроке наш с вами труд поможет нам преодолеть все препятствия.

1. Актуализация опорных знаний. (Фронтальный опрос.)

Презентация. (Слайды 2–4)

– Сформулируйте определение многоугольника, назовите его основные элементы.
– Определение выпуклого многоугольника.
– Приведите примеры известных вам четырехугольников, которые являются выпуклыми многоугольниками.
– Можно ли треугольник считать выпуклым многоугольником?
– Что такое внешний угол выпуклого многоугольника?

2. Постановка проблемы (выход на тему урока).

Устная фронтальная работа.

Найдите сумму углов данных многоугольников (Слайды 5–6)

– треугольника; прямоугольника:
– трапеции; произвольного семиугольника.

В случае затруднения учитель задает вопросы:

– Сформулируйте определение трапеции.
– Назовите основания трапеции.
– Что можно сказать о паре углов А и Д, каким свойством они обладают?
– Можно ли еще назвать на чертеже пару внутренних односторонних улов?
– Смогли вы найти сумму углов семиугольника? Какой возникает вопрос? (Существует ли формула для нахождения суммы углов произвольного многоугольника?)

Итак, ясно, что наших знаний на сегодня не достаточно для решения этой задачи.

Каким образом можно сформулировать тему нашего урока? – Сумма углов выпуклого многоугольника.

3. Решение проблемы . Чтобы ответить на поставленный вопрос, давайте проведем небольшое исследование.

Мы уже знаем теорему о сумме углов треугольника. Можем ли мы ее каким либо образом применить?

– Что для этого надо сделать? (Разбить многоугольник на треугольники.)

– А каким образом многоугольник можно разбить на треугольники? Подумайте над этим, обсудите и предложите свои самые удачные варианты.

Идет работа в группах, каждая группа работает за отдельным компьютером, на котором установлена программа “Geo Gebra”.

По окончании работы учитель выводит на экран результаты работы групп. (Слайд 7)

– Давайте проанализируем предложенные варианты и попробуем выбрать самый оптимальный для нашего исследования.

Определимся с критериями отбора: что мы хотим получить в результате разбиения? (Сумма всех углов построенных треугольников должна быть равна сумме углов многоугольника.)

– Какие варианты можно сразу отбросить? Почему?

(Вариант 1, так как сумма углов всех треугольников не равна сумме углов многоугольника.)

– Какой вариант годиться больше всего? Почему? (Вариант 3.)

Как получили этот вариант? (Провели диагонали из одной вершины многоугольника

чертеж n – количество вершин многоугольника Количество диагоналей, проведенных из одной вершины Количество полученных треугольников
4
5
6
7
n

– Попробуем установить зависимость между количеством вершин многоугольника, количеством диагоналей, которые можно провести из одной вершины и количеством получаемых при этом треугольников.

Каждая группа получает таблицу, которую должны заполнить в процессе исследования.

После обсуждения в группах дети формулируют полученные выводы:
из одной вершины n-угольника можно провести n – 3 диагонали, (так как диагональ нельзя провести к самой выбранной вершине и к двум соседним). При этом получим n – 2 треугольника.

Следовательно, сумма углов выпуклого многоугольника равна 180 0 (n-2).

– Вернемся к предложенным вариантам разбиения многоугольника на треугольники.

Можно ли использовать для доказательства этой теоремы вариант, предложенный на рисунке 4?

– Сколько треугольников получается при таком разбиении? (п штук)
– На сколько отличается сумма углов всех треугольников от суммы углов многоугольника? (На 360 0)
– Каким образом можно сосчитать сумму углов многоугольника в этом случае?

(180п – 360 = 180 п – 180х2 = 180(п -2))(С лайд 8)

– Удовлетворяет ли главному требованию, которое мы предъявляли к разбиению, вариант, предложенный на рисунке 2? (Да.)

– Почему не целесообразно его использование для нахождения суммы углов многоугольника? (Тяжелее подсчитать количество получаемых треугольников.)

Ну а теперь вернемся к задаче, которую мы не смогли решить вначале урока.

(Дети устно считают сумму углов семиугольника и еще два аналогичных упражнения.) (Слайд 9 и 10)

4. Применение полученных знаний.

Мы вывели формулу для нахождения суммы внутренних углов выпуклого многоугольника. А теперь поговорим о сумме внешних углов многоугольника, взятых по одной при каждой вершине.

Итак, задача: что больше: сумма внешних углов, взятых по одному при каждой вершине, у выпуклого шестиугольника или у треугольника? (Слайд 11)

Дети высказывают свои предположения. Учитель предлагает провести исследование для решения этого вопроса.

Каждая группа получает задание для самостоятельного решения.

Группа 1.

1) Найдите сумму внешних углов, взятых по одному при каждой вершине, у правильного треугольника.
2) – У треугольника, градусные величины углов которого равны соответственно 70 0 , 80 0 и 30 0 .

Группа 2.

1) Найдите сумму внешних углов, взятых по одному при каждой вершине, у прямоугольника.
2) – У четырехугольника, внутренние углы которого равны соответственно 70 0 , 80 0 и 120 0 и 90 0 .

Группа 3.

1) Найдите сумму внешних углов, взятых по одному при каждой вершине, у правильного шестиугольника.
2) – У шестиугольника, внутренние углы которого равны соответственно 170 0 , 80 0 и 130 0 , 100 0 , 70 0 , 170 0.

После окончания работы дети сообщают свои результаты, учитель заносит их в таблицу и демонстрирует на экране. (Слайд 12)

Итак, какой вывод можно сделать из полученных результатов? (Сумма внешних углов, взятых по одному при каждой вершине, у любого многоугольника равна 360 0.)

А теперь давайте попробуем доказать этот факт для любого н-угольника.

Если возникают трудности, коллективно обсуждается план доказательства:

1. Обозначить внутренние углы многоугольника через α, β, γ и т.д.
2. Выразить через введенные обозначения градусные меры внешних углов
3. Составить выражение для нахождения суммы внешних углов многоугольника
4. Преобразовать полученное выражение, использовать полученную ранее формулу для суммы внутренних углов многоугольника.

Доказательство записывается на доске:

(180 – α) + (180 – β) + (180 – γ) + …= 180 п – (α+ β +γ + …) = 180 п – 180(п – 2) = 360

5. Закрепление изученного материала. Решение задач.

Задача 1. Существует ли выпуклый многоугольник с такими внутренними углами: 45 0 , 68 0 , 73 0 и 56 0 ? Объясните свой ответ.

Проведем доказательство от противного. Если у выпуклого многоугольника четыре острых внутренних угла то среди его внешних углов четырех тупых, откуда следует, что сумма всех внешних углов многоугольника больше 4*90 0 = 360 0 . Имеем противоречие. Утверждение доказано.

В выпуклом многоугольнике три угла по 80 градусов, а остальные – 150 градусов. Сколько углов в выпуклом многоугольнике?

Так как: для выпуклого n-угольника сумма углов равна 180°(n – 2) , то 180(n – 2)=3*80 + x*150, где 3 угла по 80 градусов нам даны по условию задачи, а количество остальных углов нам пока неизвестно, значит, обозначим их количество через x.

Однако из записи в левой части мы определили количество углов многоугольника как n, поскольку из них величины трех углов мы знаем по условию задачи, то очевидно, что x=n-3.

Таким образом, уравнение будет выглядеть так: 180(n – 2) = 240 + 150(n – 3)

Решаем полученное уравнение

180n – 360 = 240 + 150n – 450

180n – 150n = 240 + 360 – 450

Ответ: 5 вершин.

6. Подведение итогов урока.

Итак, давайте подведем итоги. Сформулируйте свои вопросы для ребят из другой группы по материалам сегодняшнего урока.

Какой вопрос вы считаете наиболее удачным?

Обсудите степень участия каждого члена группы в коллективной работе, назовите самых активных.

Чья работа в группе была самой результативной?

7. Домашнее задание:

1. Задача.

В многоугольнике три угла по 113 градусов, а остальные равны между собой и их градусная мера – целое число. Найти количество вершин многоугольника.

2. п.114 стр.169–171, Погорелов А.В. “Геометрия 7–9”.

В основном курсе геометрии доказывается, что сумма углов выпуклого n-угольника равна 180° (n-2). Оказывается, что это утверждение справедливо и для невыпуклых многоугольников.

Теорема 3. Сумма углов произвольного n-угольника равна 180° (n - 2).

Доказательство. Разобьем многоугольник на треугольники, проведением диагоналей (рис. 11). Число таких треугольников равно n-2, и в каждом треугольнике сумма углов равна 180°. Поскольку углы треугольников составляют углы многоугольника, то сумма углов многоугольника равна 180° (n - 2).

Рассмотрим теперь произвольные замкнутые ломаные, возможно с самопересечениями A1A2…AnA1 (рис. 12, а). Такие самопересекающиеся ломаные будем называть звездчатыми многоугольниками (рис. 12, б-г).

Зафиксируем направление подсчета углов против часовой стрелки. Заметим, что углы, образованные замкнутой ломаной, зависят от направления ее обхода. Если направление обхода ломаной меняется на противоположное, то углами многоугольника будут углы, дополняющие углы исходного многоугольника до 360°.

Если M - многоугольник, образован простой замкнутой ломаной, проходимой в направлении по часовой стрелке (рис. 13, а), то сумма углов этого многоугольника будет равна 180° (n - 2). Если же ломаная проходится в направлении против часовой стрелки (рис. 13, б), то сумма углов будет равна 180° (n + 2).

Таким образом, общая формула суммы углов многоугольника, образованного простой замкнутой ломаной, имеет вид = 180° (n 2), где - сумма углов, n - число углов многоугольника, «+» или «-» берется в зависимости от направления обхода ломаной.

Наша задача состоит в том, чтобы вывести формулу суммы углов произвольного многоугольника, образованного замкнутой (возможно самопересекающейся) ломаной. Для этого введем понятие степени многоугольника.

Степенью многоугольника называется число оборотов, совершаемой точкой при полном последовательном обходе его сторон. Причем обороты, совершаемые в направлении против часовой стрелки, считаются со знаком «+», а обороты по часовой стрелке - со знаком «-».

Ясно, что у многоугольника, образованного простой замкнутой ломаной, степень равна +1 или -1 в зависимости от направления обхода. Степень ломаной на рисунке 12, а равна двум. Степень звездчатых семиугольников (рис. 12, в, г) равна соответственно двум и трем.

Аналогичным образом понятие степени определяется и для замкнутых кривых на плоскости. Например, степень кривой, изображенной на рисунке 14 равна двум.


Для нахождения степени многоугольника или кривой можно поступать следующим образом. Предположим, что, двигаясь по кривой (рис. 15, а), мы, начиная с какого-то места A1, совершили полный оборот, и попали в ту же точку A1. Удалим из кривой соответствующий участок и продолжим движение по оставшейся кривой (рис. 15,б). Если, начиная с какого-то места A2, мы снова совершили полный оборот и попали в ту же точку, то удаляем соответствующий участок кривой и продолжаем движение (рис. 15, в). Считая количество удаленных участков со знаками «+» или «-», в зависимости от их направления обхода, получим искомую степень кривой.

Теорема 4. Для произвольного многоугольника имеет место формула

180° (n +2m),

где - сумма углов, n - число углов, m - степень многоугольника.

Доказательство. Пусть многоугольник M имеет степень m и условно изображен на рисунке 16. M1, …, Mk - простые замкнутые ломаные, проходя по которым, точка совершает полные обороты. A1, …, Ak - соответствующие точки самопересечения ломаной, не являющиеся ее вершинами. Обозначим число вершин многоугольника M, входящих в многоугольники M1, …, Mk через n1, …, nk соответственно. Поскольку, помимо вершин многоугольника M, к этим многоугольникам добавляются еще вершины A1, …, Ak, то число вершин многоугольников M1, …, Mk будет равно соответственно n1+1, …, nk+1. Тогда суммы их углов будут равны 180° (n1+12), …, 180° (nk+12). Плюс или минус берется в зависимости от направления обхода ломаных. Сумма углов многоугольника M0, оставшегося от многоугольника M после удаления многоугольников M1, …, Mk, равна 180° (n-n1- …-nk+k2). Суммы углов многоугольников M0, M1, …, Mk дают сумму углов многоугольника M и в каждой вершине A1, …, Ak дополнительно получим 360°. Следовательно, имеем равенство

180° (n1+12)+…+180° (nk+12)+180° (n-n1- …-nk+k2)=+360°k.

180° (n2…2) = 180° (n+2m),

где m - степень многоугольника M.


В качестве примера рассмотрим вычисление суммы углов пятиконечной звездочки (рис. 17, а). Степень соответствующей замкнутой ломаной равна -2. Поэтому искомая сумма углов равна 180.

Пусть - данный выпуклый многоугольник и n > 3. Тогда проведем из одной вершины к противоположным вершинам n-3 диагонали: . Так как многоугольник выпуклый, то эти диагонали разбивают его на n - 2 треугольника: . Сумма углов многоугольника совпадает с суммой углов всех этих треугольников. Сумма углов в каждом треугольнике равна 180°, а число этих треугольников есть n-2. Следовательно, сумма углов n-угольника равна 180°(n-2). Теорема доказана.

Замечание

Для невыпуклого n-угольника сумма углов также равна 180°(n-2). Доказательство аналогично, но использует в дополнение лемму о том, что любой многоугольник может быть разрезан диагоналями на треугольники.

Примечания

Теорема о сумме углов многоугольника для многоугольников на сфере не выполняется (а также на любой другой искажённой плоскости, кроме некоторых случаев). Подробнее смотрите неевклидовы геометрии .

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Теорема о сумме углов многоугольника" в других словарях:

    Треугольник Теорема о сумме углов треугольника классическая теорема евклидовой геометрии. Утверждает, что … Википедия

    - … Википедия

    Утверждает, что любые два равновеликих многоугольника равносоставлены. Более формально: Пусть P и Q суть два многоугольника с одинаковой площадью. Тогда их можно разрезать соответственно на многоугольники и, так что для любого … Википедия

    Теорема Бойяи Гервина утверждает, что любые два равновеликих многоугольника равносоставлены. Более формально: Пусть и суть два многоугольника с одинаковой площадью. Тогда их можно разрезать соответственно на многоугольники и, так что для… … Википедия

    - … Википедия

    У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

Данные геометрические фигуры окружают нас повсюду. Выпуклые многоугольники бывают природными, например, пчелиные соты или искусственными (созданными человеком). Эти фигуры используются в производстве различных видов покрытий, в живописи, архитектуре, украшениях и т.д. Выпуклые многоугольники обладают тем свойством, что все их точки располагаются по одну сторону от прямой, что проходит через пару соседних вершин этой геометрической фигуры. Существуют и другие определения. Выпуклым называется тот многоугольник, который расположен в единой полуплоскости относительно любой прямой, содержащей одну из его сторон.

В курсе элементарной геометрии всегда рассматриваются исключительно простые многоугольники. Чтобы понять все свойства таких необходимо разобраться с их природой. Для начала следует уяснить, что замкнутой называется любая линия, концы которой совпадают. Причем фигура, образованная ею, может иметь самые разные конфигурации. Многоугольником называют простую замкнутую ломаную линию, у которой соседние звенья не располагаются на одной прямой. Ее звенья и вершины являются, соответственно, сторонами и вершинами этой геометрической фигуры. Простая ломаная не должна иметь самопересечений.

Вершины многоугольника называют соседними, в том случае если они представляют собой концы одной из его сторон. Геометрическая фигура, у которой имеется n-е число вершин, а значит, и n-е количество сторон, называется n-угольником. Саму ломаную линию называют границей или контуром этой геометрической фигуры. Многоугольной плоскостью или плоским многоугольником называют конечную часть любой плоскости, им ограниченной. Соседними сторонами этой геометрической фигуры называют отрезки ломаной линии, исходящие из одной вершины. Они будут не соседними, если исходят их разных вершин многоугольника.

Другие определения выпуклых многоугольников

В элементарной геометрии существует еще несколько эквивалентных по своему значению определений, указывающих на то, какой многоугольник называется выпуклым. Причем все эти формулировки в одинаковой степени верны. Выпуклым считается тот многоугольник, у которого:

Каждый отрезок, что соединяет две любые точки внутри него, полностью лежит в нем;

Внутри него лежат все его диагонали;

Любой внутренний угол не превышает 180°.

Многоугольник всегда разбивает плоскость на 2 части. Одна из них - ограниченная (она может быть заключена в круг), а другая - неограниченная. Первую называют внутренней областью, а вторую - внешней областью этой геометрической фигуры. Данный многоугольник является пересечением (иными словами - общей составляющей) нескольких полуплоскостей. При этом каждый отрезок, имеющий концы в точках, которые принадлежат многоугольнику, полностью принадлежит ему.

Разновидности выпуклых многоугольников

Определение выпуклого многоугольника не указывает на то, что их существует множество видов. Причем у каждого из них имеются определенные критерии. Так, выпуклые многоугольники, у которых есть внутренний угол равный 180°, называются слабовыпуклыми. Выпуклая геометрическая фигура, что имеет три вершины, называется треугольником, четыре - четырехугольником, пять - пятиугольником и т. д. Каждый из выпуклых n-угольников отвечает следующему важнейшему требованию: n должно равняться или быть больше 3. Каждый из треугольников является выпуклым. Геометрическая фигура данного типа, у которой все вершины располагаются на одной окружности, называется вписанной в окружность. Выпуклый многоугольник называют описанным, если все его стороны около окружности прикасаются к ней. Два многоугольника называют равными только в том случае, когда при помощи наложения их можно совместить. Плоским многоугольником называют многоугольную плоскость (часть плоскости), что ограничена этой геометрической фигурой.

Правильные выпуклые многоугольники

Правильными многоугольниками называют геометрические фигуры с равными углами и сторонами. Внутри них имеется точка 0, которая находится на одинаковом расстоянии от каждой из его вершин. Ее называют центром этой геометрической фигуры. Отрезки, соединяющие центр с вершинами этой геометрической фигуры называют апофемами, а те, что соединяют точку 0 со сторонами - радиусами.

Правильный четырехугольник - квадрат. Правильный треугольник называют равносторонним. Для таких фигур существует следующее правило: каждый угол выпуклого многоугольника равен 180° * (n-2)/ n,

где n - число вершин этой выпуклой геометрической фигуры.

Площадь любого правильного многоугольника определяют по формуле:

где p равно половине суммы всех сторон данного многоугольника, а h равно длине апофемы.

Свойства выпуклых многоугольников

Выпуклые многоугольники имеют определенные свойства. Так, отрезок, который соединяет любые 2 точки такой геометрической фигуры, обязательно располагается в ней. Доказательство:

Предположим, что Р - данный выпуклый многоугольник. Берем 2 произвольные точки, например, А, В, которые принадлежат Р. По существующему определению выпуклого многоугольника эти точки расположены в одной стороне от прямой, что содержит любую сторону Р. Следовательно, АВ также имеет это свойство и содержится в Р. Выпуклый многоугольник всегда возможно разбить на несколько треугольников абсолютно всеми диагоналями, которые проведены из одной его вершины.

Углы выпуклых геометрических фигур

Углы выпуклого многоугольника - это углы, что образованы его сторонами. Внутренние углы находятся во внутренней области данной геометрической фигуры. Угол, что образован его сторонами, которые сходятся в одной вершине, называют углом выпуклого многоугольника. с внутренними углами данной геометрической фигуры, называют внешними. Каждый угол выпуклого многоугольника, расположенный внутри него, равен:

где х - величина внешнего угла. Эта простая формула действует в отношении любых геометрических фигур такого типа.

В общем случае, для внешних углов существует следующие правило: каждый угол выпуклого многоугольника равен разности между 180° и величиной внутреннего угла. Он может иметь значения в пределах от -180° до 180°. Следовательно, когда внутренний угол составляет 120°, внешний будет иметь величину в 60°.

Сумма углов выпуклых многоугольников

Сумма внутренних углов выпуклого многоугольника устанавливается по формуле:

где n - число вершин n-угольника.

Сумма углов выпуклого многоугольника вычисляется довольно просто. Рассмотрим любую такую геометрическую фигуру. Для определения суммы углов внутри выпуклого многоугольника необходимо соединить одну из его вершин с другими вершинами. В результате такого действия получается (n-2) треугольника. Известно, что сумма углов любых треугольников всегда равна 180°. Поскольку их количество в любом многоугольнике равняется (n-2), сумма внутренних углов такой фигуры равняется 180° х (n-2).

Сумма углов выпуклого многоугольника, а именно любых двух внутренних и смежных с ними внешних углов, у данной выпуклой геометрической фигуры всегда будет равна 180°. Исходя из этого, можно определить сумму всех ее углов:

Сумма внутренних углов составляет 180° * (n-2). Исходя из этого, сумму всех внешних углов данной фигуры устанавливают по формуле:

180° * n-180°-(n-2)= 360°.

Сумма внешних углов любого выпуклого многоугольника всегда будет равна 360° (независимо от количества его сторон).

Внешний угол выпуклого многоугольника в общем случае представляется разностью между 180° и величиной внутреннего угла.

Другие свойства выпуклого многоугольника

Помимо основных свойств данных геометрических фигур, у них есть и другие, которые возникают при манипуляциях с ними. Так, любой из многоугольников может быть разделен на несколько выпуклых n-угольников. Для этого необходимо продолжить каждую из его сторон и разрезать эту геометрическую фигуру вдоль этих прямых линий. Разбить любой многоугольник на несколько выпуклых частей можно и таким образом, чтобы вершины каждого из кусков совпадали со всеми его вершинами. Из такой геометрической фигуры можно очень просто сделать треугольники путем проведения всех диагоналей из одной вершины. Таким образом, любой многоугольник, в конечном счете, можно разбить на определенное количество треугольников, что оказывается весьма полезным при решении различных задач, связанных с такими геометрическими фигурами.

Периметр выпуклого многоугольника

Отрезки ломаной линии, называемые сторонами многоугольника, чаще всего обозначаются следующими буквами: ab, bc, cd, de, ea. Это стороны геометрической фигуры с вершинами a, b, c, d, e. Сумма длины всех сторон этого выпуклого многоугольника называют его периметром.

Окружность многоугольника

Выпуклые многоугольники могут быть вписанными и описанными. Окружность, касающаяся всех сторон этой геометрической фигуры, называется вписанной в нее. Такой многоугольник называют описанным. Центр окружности, которая вписана в многоугольник, представляет собой точку пересечения биссектрис всех углов внутри данной геометрической фигуры. Площадь такого многоугольника равняется:

где r - радиус вписанной окружности, а p - полупериметр данного многоугольника.

Окружность, содержащую вершины многоугольника, называют описанной около него. При этом данная выпуклая геометрическая фигура называется вписанной. Центр окружности, которая описана около такого многоугольника, представляет собой точку пересечения так называемых серединных перпендикуляров всех сторон.

Диагонали выпуклых геометрических фигур

Диагонали выпуклого многоугольника - это отрезки, которые соединяют не соседние вершины. Каждая из них лежит внутри этой геометрической фигуры. Число диагоналей такого n-угольника устанавливается по формуле:

N = n (n - 3)/ 2.

Число диагоналей выпуклого многоугольника играет важную роль в элементарной геометрии. Число треугольников (К), на которые возможно разбить каждый выпуклый многоугольник, вычисляется по следующей формуле:

Количество диагоналей выпуклого многоугольника всегда зависит от числа его вершин.

Разбиение выпуклого многоугольника

В некоторых случаях для решения геометрических задач необходимо разбить выпуклый многоугольник на несколько треугольников с непересекающимися диагоналями. Эту проблему можно решить путем выведения определенной формулы.

Определение задачи: назовем правильным некое разбиение выпуклого n-угольника на несколько треугольников диагоналями, пересекающимися только в вершинах этой геометрической фигуры.

Решение: Предположим, что Р1, Р2 , Р3 … , Pn - вершины этого n-угольника. Число Xn - количество его разбиений. Внимательно рассмотрим полученную диагональ геометрической фигуры Pi Pn. В любом из правильных разбиений Р1 Pn принадлежит определенному треугольнику Р1 Pi Pn, у которого 1

Пусть і = 2 будет одной группой правильных разбиений, всегда содержащей диагональ Р2 Pn. Количество разбиений, которые входят в нее, совпадает с числом разбиений (n-1)-угольника Р2 Р3 Р4… Pn. Иными словами, оно равняется Xn-1.

Если і = 3, то эта другая группа разбиений будет всегда содержать диагонали Р3 Р1 и Р3 Pn. При этом количество правильных разбиений, что содержатся в данной группе, будет совпадать с числом разбиений (n-2)-угольника Р3 Р4… Pn. Другими словами, оно будет равняться Xn-2.

Пусть і = 4, тогда среди треугольников правильное разбиение непременно будет содержать треугольник Р1 Р4 Pn, к которому будет примыкать четырехугольник Р1 Р2 Р3 Р4, (n-3)-угольник Р4 Р5… Pn. Количество правильных разбиений такого четырехугольника равняется Х4, а число разбиений (n-3)-угольника равняется Xn-3. Исходя из всего изложенного, можно сказать, что полное количество правильных разбиений, которые содержатся в данной группе, равняется Xn-3 Х4. Другие группы, у которых і = 4, 5, 6, 7… будут содержать Xn-4 Х5, Xn-5 Х6, Xn-6 Х7 … правильных разбиений.

Пусть і = n-2, то количество правильных разбиений в данной группе будет совпадать с числом разбиений в группе, у которой i=2 (другими словами, равняется Xn-1).

Так как Х1 = Х2 = 0, Х3=1, Х4=2…, то число всех разбиений выпуклого многоугольника равно:

Xn = Xn-1 + Xn-2 + Xn-3 Х4 + Xn-4 Х5 + … + Х 5 Xn-4 + Х4 Xn-3 + Xn-2 + Xn-1.

Х5 = Х4 + Х3 + Х4 = 5

Х6 = Х5 + Х4 + Х4 + Х5 = 14

Х7 = Х6 + Х5 + Х4 * Х4 + Х5 + Х6 = 42

Х8 = Х7 + Х6 + Х5 * Х4 + Х4 * Х5 + Х6 + Х7 = 132

Количество правильных разбиений, пересекающих внутри одну диагональ

При проверке частных случаев, можно прийти к предположению, что число диагоналей выпуклых n-угольников равняется произведению всех разбиений этой фигуры на (n-3).

Доказательство данного предположения: представим, что P1n = Xn * (n-3), тогда любой n-угольник возможно разбить на (n-2)-треугольников. При этом из них может быть сложен (n-3)-четырехугольник. Наряду с этим, у каждого четырехугольника будет диагональ. Поскольку в этой выпуклой геометрической фигуре могут быть проведены две диагонали, это значит, что и в любых (n-3)-четырехугольниках возможно провести дополнительные диагонали (n-3). Исходя из этого, можно сделать вывод, что в любом правильном разбиении имеется возможность провести (n-3)-диагонали, отвечающие условиям этой задачи.

Площадь выпуклых многоугольников

Нередко при решении различных задач элементарной геометрии появляется необходимость определить площадь выпуклого многоугольника. Предположим, что (Xi. Yi), i = 1,2,3… n представляет собой последовательность координат всех соседних вершин многоугольника, не имеющего самопересечений. В этом случае его площадь вычисляется по такой формуле:

S = ½ (∑ (X i + X i + 1) (Y i + Y i + 1)),

где (Х 1 , Y 1) = (X n +1 , Y n + 1).

В 8 классе на уроках геометрии в школе ученики впервые знакомятся с понятием выпуклого многоугольника. Очень скоро они узнают, что эта фигура обладает очень интересным свойством. Какой бы сложной она ни была, сумма всех внутренних и внешних углов выпуклого многоугольника принимает строго определенное значение. В данной статье репетитор по математике и физике рассказывает о том, чему равна сумма углов выпуклого многоугольника.

Сумма внутренних углов выпуклого многоугольника

Как доказать эту формулу?

Прежде чем перейти к доказательству этого утверждения, вспомним, какой многоугольник называется выпуклым. Выпуклым называется такой многоугольник, который целиком находится по одну сторону от прямой, содержащей любую его сторону. Например такой, который изображен на этом рисунке:

Если же многоугольник не удовлетворяет указанному условию, то он называется невыпуклым. Например, такой:

Сумма внутренних углов выпуклого многоугольника равна , где — количество сторон многоугольника.

Доказательство этого факта основано на хорошо известной всем школьникам теореме о сумме углов в треугольнике. Уверен, что и вам эта теорема знакома. Сумма внутренних углов треугольника равна .

Идея состоит в том, чтобы разбить выпуклый многоугольник на несколько треугольников. Сделать это можно разными способами. В зависимости от того, какой способ мы выберем, доказательства будут немного отличаться.

1. Разобьём выпуклый многоугольник на треугольники всеми возможными диагоналями, проведёнными из какой-нибудь вершины. Легко понять, что тогда наш n-угольник разобьётся на треугольника:

Причём сумма всех углов всех получившихся треугольников равна сумме углов нашего n-угольника. Ведь каждый угол в получившихся треугольниках является частичной какого-то угла в нашем выпуклом многоугольнике. То есть искомая сумма равна .

2. Можно также выбрать точку внутри выпуклого многоугольника и соединить её со всеми вершинами. Тогда наш n-угольник разобьется на треугольников:

Причём сумма углов нашего многоугольника в этом случае будет равна сумме всех углов всех этих треугольников за вычетом центрального угла, который равен . То есть искомая сумма опять же равна .

Сумма внешних углов выпуклого многоугольника

Зададимся теперь вопросом: «Чему равна сумма внешних углов выпуклого многоугольника?» Ответить на этот вопрос можно следующим образом. Каждый внешний угол является смежным с соответствующим внутренним. Поэтому он равен :

Тогда сумма всех внешних углов равна . То есть она равна .

То есть получается весьма забавный результат. Если отложить последовательно друг за другом все внешние углы любого выпуклого n-угольника, то в результате заполнится ровно вся плоскости.

Этот интересный факт можно проиллюстрировать следующим образом. Давайте пропорциональном уменьшать все стороны какого-нибудь выпуклого многоугольника до тех пор, пока он не сольётся в точку. После того, как это произойдёт, все внешние углы окажутся отложенными один от другого и заполнят таким образом всю плоскость.

Интересный факт, не правда ли? И таких фактов в геометрии очень много. Так что учите геометрию, дорогие школьники!

Материал о том, чему равна сумма углов выпуклого многоугольника, подготовил , Сергей Валерьевич


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении