Дом, семья, быт

План-конспект занятия "Мейоз. Образование половых клеток. Оплодотворение". Мейоз как основа образования половых клеток организмов Деление хромосом при образовании половой клетки

Подумайте!

1.Почему при вегетативном размножении не наблюдается расщепление признаков в потомстве гибридов?

3.Как вы считаете, какая форма размножения обеспечивает лучшую приспособляемость к изменениям окружающей среды?

Для осуществления полового размножения необходимы специализированные клетки - гаметы, содержащие одинарный (гаплоидный) набор хромосом. При их слиянии (оплодотворении) происходит образование диплоидного набора, в котором каждая хромосома имеет пару - гомологичную хромосому. В каждой паре гомологичных хромосом одна хромосома получена от отца, а вторая - от матери.

Процесс образования половых клеток - гаметогенез - протекает в специальных органах - половых железах. У большинства животных мужские половые клетки (сперматозоиды) образуются в семенниках, женские гаметы (яйцеклетки) - в яичниках. Развитие яйцеклеток называют овогенезом , а сперматозоидов - сперматогенезом.

Строение половых клеток . Яйцеклетки - это относительно крупные неподвижные клетки округлой формы. У некоторых рыб, пресмыкающихся и птиц они содержат большой запас питательных веществ в виде желтка и имеют размеры от 10 мм до 15 см. Яйцеклетки млекопитающих, в том числе и человека, гораздо мельче (0,1-0,3 мм) и желтка практически не содержат.

Сперматозоиды - мелкие подвижные клетки, у человека их длина всего около 60 мкм. У разных организмов они отличаются формой и размерами, но, как правило, все сперматозоиды имеют головку, шейку и хвост, обеспечивающий их подвижность. В головке сперматозоида находится ядро, содержащее хромосомы. В шейке сосредоточены митохондрии, которые обеспечивают движущийся сперматозоид энергией.

Сперматозоиды впервые были описаны голландским естествоиспытателем А. Левенгуком в 1677 г. Он же и ввел этот термин - сперматозоид (от греч, sperma - семя и zoon - живое существо), т. е. живое семя. Яйцеклетка млекопитающих была открыта в 1827 г. российским ученым К. М. Бэром.

Образование половых клеток . Развитие половых клеток подразделяют на несколько стадий: размножение, рост, созревание, а в процессе сперматогенеза выделяют еще и стадию формирования.

Стадия размножения . На этой стадии клетки, формирующие стенки половых желез, активно делятся митозом, образуя незрелые половые клетки. Эта стадия у мужчин начинается с наступлением половой зрелости и продолжается почти всю жизнь. У женщин образование первичных половых клеток завершается еще в эмбриональном периоде, т. е. общее количество яйцеклеток, которые у женщины будут созревать в течение ее репродуктивного периода, определяется уже на ранней стадии развития женского организма. На стадии размножения первичные половые клетки, как и все остальные клетки тела, диплоидны.



Стадия роста. На стадии роста, которая гораздо лучше выражена в овогенезе, происходит увеличение цитоплазмы клеток, накопление необходимых веществ и редупликация ДНК (удвоение хромосом).

Стадия созревания . Третья стадия - это мейоз. Мейоз - это особый способ деленияклеток, приводящий к уменьшению числа хромосом вдвое и к переходу клетки из диплоидного состояния в гаплоидное.

Будущие гаметы на стадии созревания делятся дважды. Клетки, приступающие к мейозу, содержат диплоидный набор уже удвоенных хромосом. В процессе двух мейотических делений из одной диплоидной клетки образуются четыре гаплоидные.

Мейоз состоит из двух последовательных делений, которым предшествует однократное удвоение ДНК, осуществленное на стадии роста. В каждом делении мейоза выделяют четыре фазы, характерные и для митоза (профазу, метафазу, анафазу, телофазу), однако они отличаются некоторыми особенностями.

Профаза первого мейотического деления (профаза I) значительно длиннее, чем профаза митоза. В это время удвоенные хромосомы, каждая из которых состоит уже из двух сестринских хроматид, спирализуются и приобретают компактные размеры. Затем гомологичные хромосомы располагаются параллельно друг другу, образуя так называемые биваленты, или тетрады, состоящие из двух хромосом (четырех хроматид). Между гомологичными хромосомами может произойти обмен соответствующими гомологичными участками, что приведет к перекомбинации наследственной информации и образованию новых сочетаний отцовских и материнских генов в хромосомах будущих гамет. К концу профазы I ядерная оболочка разрушается.

В метафазе I гомологичные хромосомы попарно в виде бивалентов, или тетрад, располагаются в экваториальной плоскости клетки, и к их центромерам присоединяются нити веретена деления.

В анафазе I гомологичные хромосомы из бивалента (тетрады) расходятся к полюсам. Следовательно, в каждую из двух образующихся клеток попадает только одна из каждой пары гомологичных хромосом - число хромосом уменьшается в два раза, хромосомный набор становится гаплоидным. Однако каждая хромосома при этом все еще состоит из двух сестринских хроматид.

В телофазе I образуются клетки, имеющие гаплоидный набор хромосом и удвоенное количество ДНК.

Спустя короткий промежуток времени клетки приступают ко второму мейотическому делению, которое протекает как типичный митоз, но отличается тем, что участвующие в нем клетки гаплоидны.

В профазе II разрушается ядерная оболочка. В метафазе хромосомы выстраиваются в экваториальной плоскости клетки, нити веретена деления соединяются с центромерами хромосом. В анафазе II центромеры, соединяющие сестринские хроматиды, делятся, хроматиды становятся самостоятельными дочерними хромосомами и расходятся к разным полюсам клетки. Телофаза II завершает второе деление мейоза.

В результате мейоза из одной исходной диплоидной клетки, содержащей удвоенные молекулы ДНК, образуются четыре гаплоидные клетки, каждая хромосома которых состоит из одиночной молекулы ДНК.

При сперматогенезе на стадии созревания в результате мейоза образуются четыре одинаковые клетки - предшественники сперматозоидов, которые на стадии формирования приобретают характерный вид зрелого сперматозоида и становятся подвижными.

Образование сперматозоидов у мужчин начинается с момента полового созревания. Длительность всех четырех фаз сперматогенеза составляет около 80 дней. За всю жизнь в организме мужчины образуется огромное количество сперматозоидов - до 10 10 .

Мейотические деления в овогенезе характеризуются рядом особенностей. Профаза I завершается еще в эмбриональном периоде, т. е. к моменту рождения девочки в ее организме уже имеется полный набор будущих яйцеклеток. Остальные события мейоза продолжаются только после полового созревания женщины. Каждый месяц в одном из яичников у женщины продолжает развитие одна из остановившихся в своем делении клеток.

В результате первого деления мейоза образуются крупная клетка - предшественник яйцеклетки и маленькое, так называемое полярное тельце, которые вступают во второе деление мейоза. На стадии метафазы II предшественница яйцеклетки овулирует, т. е. выходит из яичника в брюшную полость, откуда попадает в яйцевод. Если происходит оплодотворение, второе мейотическое деление завершается - образуется зрелая яйцеклетка и второе полярное тельце. Если слияния со сперматозоидом не происходит, не закончившая деление клетка погибает и выводится из организма.

Полярные тельца служат для удаления избытка генетического материала и перераспределения питательных веществ в пользу яйцеклетки. Спустя некоторое время после деления они погибают.

Несмотря на то, что в женском эмбрионе закладывается очень много яйцеклеток, созревают из них лишь немногие. За репродуктивный период, т. е. когда женщина способна к деторождению, окончательно формируются около 400 яйцеклеток.

Значение гаметогенеза . В течение гаметогенеза образуются половые клетки, содержащие гаплоидный набор хромосом, что позволяет при оплодотворении восстанавливать количество хромосом, характерное для вида. В отсутствие мейоза слияние гамет приводило бы к удвоению числа хромосом у каждого последующего поколения, возникающего в результате полового размножения. Этого не происходит, благодаря существованию особого процесса - мейоза, во время которого диплоидное количество хромосом (2л) сокращается до гаплоидного (1л), т. е. биологическая роль мейоза заключается в поддержании постоянства числа хромосом в ряду поколений вида.

Возникновение многоклеточности сопровождается специализацией тканей организма: наряду с появлением соматических тканей (костная, мышечная, соединительная и т.д.) обособляется ткань, дающая начало половым клеткам, - генеративная ткань. Половое размножение возникло в процессе эволюции как высшая форма воспроизведения организмов, позволяющая многократно увеличивать численность потомства, и, что самое главное, половое размножение явилось необходимой предпосылкой возникновения многих форм наследственной изменчивости. Эти два фактора во многом способствовали естественному отбору наиболее приспособленных особей и тем самым существенно определяли скорость эволюционных преобразований.

При половом размножении растений и животных (в том числе и человека) преемственность между поколениями обеспечивается только через половые клетки - яйцеклетку и сперматозоид. Если бы яйцеклетка и сперматозоид обладали полным набором генетических характеристик (2n2с), свойственных клеткам тела, то при их слиянии образовался бы организм с удвоенным набором (4n4с). Например, в соматических клетках организма человека содержится 46 хромосом. Если бы яйцеклетка и сперматозоид человека содержали по 46 хромосом, то при их слиянии образовалась бы зигота с 92 хромосомами. В следующем поколении проявились бы потомки со 184 хромосомами и т.д.

Вместе с тем хорошо известно, что количество хромосом является строгой видовой характеристикой, а изменение их числа приводит либо к гибели организма на ранних этапах эмбрионального развития, либо обусловливает тяжелые заболевания. Таким образом, при образовании половых клеток должен существовать механизм, приводящий к уменьшению числа хромосом точно в два раза. Этим процессом является мейоз (от греч. meiosis - уменьшение).

Мейоз включает два последовательных деления. В результате первого деления происходит уменьшение числа хромосом в ядре ровно в два раза. Именно поэтому первое деление мейоза иногда называют редукционным делением, т. е. уменьшающим. Второе деление мейоза в основных чертах повторяет митоз и носит название вквационного (уравнительного) деления. Мейоз состоит из ряда последовательных фаз, в которых хромосомы претерпевают специфические изменения (рис. II.3). Фазы, относящиеся к первому делению, обозначаются римской цифрой I, а относящиеся ко вто-вому - цифрой II.

В каждом делении мейоза по аналогии с митозом различают ррофазу, метафазу, анафазу и телофазу.

В результате мейоза образуются четыре гаплоидные клетки - гаметы. На рисунке представлены три пары хромосом К первому делению относят изменения ядра от профазы I до телофазы I.

Профаза I имеет принципиальные отличия от профазы митоза. Она состоит из пяти основных стадий: лептотены, зиготены, пахитены, диплотены и диакинеза.

Самая ранняя стадия профазы I - лептотена. На этой стадии появляются тонкие перекрученные нити хромосом. Число видимых в световом микроскопе нитей равно диплоидному числу хроvосом. Двойственное строение хромосомных нитей (сестринские хроматиды) постепенно выявляется по мере усиления спирализации.

На стадии зиготены происходит взаимное притяжение (конъюгация) парных или гомологичных хромосом, одна из которых была привнесена отцовской половой клеткой, другая - материнской. В митозе подобного процесса нет. Конъюгировавглая пара хромосом называется бивалентом. В нем четыре хроматиды, но они еще не различимы под микроскопом.

Стадия пахитены - самая продолжительная стадия профазы первого деления. Дальнейшая спирализапия приводит к утолщению хромосом. Двойственное строение хромосом становится четко различимым: каждая хромосома состоит из двух хроматид, объединенных одной центромерой. Четыре хроматиды, объединенные попарно двумя центромерами, образуют тетраду. На стадии пахитены можно видеть ядрышки, прикрепленные к определенным участкам хромосом (области вторичных перетяжек).

В следующей стадии - диплотене - начинается процесс отталкивания друг от друга ранее конъюгировавшихся хромосом. Этот процесс начинается с области центромер. Точки соприкосновения иесестринских хроматид как бы сползают к концам хромосом, образуя Х-образные фигуры, называемые хиазмами. Образование хиазм сопровождается обменом гомологичных участков хроматид. Образование хиазм существенно увеличивает наследственную изменчивость благодаря появлению хромосом с новыми комбинациями аллелей за счет кроссинговера.

Последняя стадия профазы I - диакинез. В диакинезе усиливаются спирализация хромосом, уменьшается число хиазм вследствие их передвижения к концам хромосом. Биваленты перемещаются в экваториальную плоскость. Исчезают оболочка ядра и ядрышки. Окончательное формирование веретена деления завершает профазу I.

В метафазе I биваленты выстраиваются в экваториальной плоскости клетки, образуя метафазную пластинку. Хромосомы при этом сильно спирализованы - утолщены и укорочены. Число бивалентов вдвое меньше, чем число хромосом в соматической клетке организма, т.е. равно гаплоидному числу.

В анафазе I гомологичные хромосомы, каждая из которых костоит из двух сестринских хроматид, расходятся к противоположным полюсам клетки. В результате этого число хромосом в каждой дочерней клетке уменьшается ровно вдвое. При этом как «отцовская», так и «материнская» хромосомы бивалента с равной вероятностью могут попадать в любую из дочерних клеток.

Телофаза I очень короткая. Она характеризуется формированием новых ядер и ядерной мембраны.

Затем следует особый период - интеркинез. В интеркинезе в отличие от интерфазы митоза отсутствует 8-период и, следовательно, не происходит репликации ДНК и удвоения числа хромосом. Сестринские хроматиды перед профазой II уже удвоены.

За интеркинезом наступает второе мейотическое деление - эквационное, которое состоит из таких же фаз, как и митоз. Уже в начале второго мейотического деления клетка содержит 23 хромосомы, каждая из которых состоит из двух сестринских хрома-тид. В профазе II формируется новое веретено деления, в метафазе II хромосомы вновь располагаются в экваториальной плоскости клетки. Во время анафазы II за счет деления центромеры к полюсам расходятся сестринские хроматиды, и в телофазе II образуются дочерние клетки с гаплоидным числом хромосом.

Таким образом, диплоидная клетка, вступившая в мейоз, образует четыре дочерние клетки с гаплоидным набором хромосом.

Биологическое значение мейоза состоит в следующем.

1. Мейоз обеспечивает преемственность в ряду поколений организмов, размножающихся половым путем, в то время как митоз выполняет ту же задачу в ряду клеточных поколений.

2. Мейоз является одним из важнейших этапов процесса полового размножения.

3. В процессе мейоза происходит редукция числа хромосом от диплоидного числа (46 у человека) до гаплоидного (23).

4. Мейоз обеспечивает комбинативную наследственную изменчивость, являющуюся предпосылкой генетического разнообразия людей и генетической уникальности каждого индивида. Комбина-тивная генетическая изменчивость в процессе мейоза возникает в результате двух событий: случайного распределения негомологичных хромосом и кроссинговера, т. е. взаимного обмена гомологичных районов хроматид при образовании хиазм.

5. Мейоз называют делением созревания, поскольку формирование половых клеток (гамет) человека, как и других эукариот, связано с редукцией числа хромосом.

20. Образование половых клеток. Мейоз

Вспомните!

Где в организме человека происходит образование половых клеток?

Какой набор хромосом содержат гаметы? Почему?

Для осуществления полового размножения необходимы специализированные клетки – гаметы , содержащие одинарный (гаплоидный) набор хромосом. При их слиянии (оплодотворении) происходит образование диплоидного набора, в котором каждая хромосома имеет пару – гомологичную хромосому. В каждой паре гомологичных хромосом одна хромосома получена от отца, а вторая – от матери.

У животных процесс образования половых клеток – гаметогенез – протекает в специальных органах – половых железах (гонадах). У большинства животных мужские половые клетки (сперматозоиды) образуются в семенниках, женские гаметы (яйцеклетки) – в яичниках. Развитие яйцеклеток называют овогенезом или оогенезом , а сперматозоидов – сперматогенезом .

Строение половых клеток.

Яйцеклетки – это относительно крупные неподвижные клетки округлой формы. У некоторых рыб, пресмыкающихся и птиц они содержат большой запас питательных веществ в виде желтка и имеют размеры от 10 мм до 15 см. Яйцеклетки млекопитающих, в том числе и человека, гораздо мельче (0,1–0,3 мм) и желтка практически не содержат.

Сперматозоиды – мелкие подвижные клетки, у человека их длина всего около 60 мкм. У разных организмов они отличаются формой и размерами, но, как правило, все сперматозоиды имеют головку, шейку и хвост, обеспечивающий их подвижность. В головке сперматозоида находится ядро, содержащее хромосомы, и акросома – особый пузырёк с ферментами, необходимыми для растворения оболочки яйцеклетки. В шейке сосредоточены митохондрии, которые обеспечивают движущийся сперматозоид энергией (рис. 63).

Рис. 63. Сперматозоид млекопитающего: А – электронная фотография; Б – схема строения

Сперматозоиды впервые были описаны голландским естествоиспытателем А. Левенгуком в 1677 г. Он же и ввёл этот термин – сперматозоид (от греч. sperma – семя и zoon – живое существо), т. е. живое семя. Яйцеклетка млекопитающих была открыта в 1827 г. российским учёным К. М. Бэром.

Образование половых клеток. Развитие половых клеток подразделяют на несколько стадий: размножение, рост, созревание, а в процессе сперматогенеза выделяют ещё и стадию формирования (рис. 64).

Рис. 64. Гаметогенез у человека

Рис. 65. Фазы мейоза

Стадия размножения. На этой стадии клетки, формирующие стенки половых желёз, активно делятся митозом, образуя незрелые половые клетки. Эта стадия у мужчин начинается с наступлением половой зрелости и продолжается почти всю жизнь. У женщин образование первичных половых клеток завершается ещё в эмбриональном периоде, т. е. общее количество яйцеклеток, которые у женщины будут созревать в течение её репродуктивного периода, определяется уже на ранней стадии развития женского организма. На стадии размножения первичные половые клетки, как и все остальные клетки тела, диплоидны.

Стадия роста. На стадии роста, которая гораздо лучше выражена в овогенезе, происходит увеличение цитоплазмы клеток, накопление необходимых веществ и редупликация ДНК (удвоение хромосом).

Стадия созревания. Третья стадия – это мейоз. Мейоз – это особый способ деления клеток, приводящий к уменьшению числа хромосом вдвое и к переходу клетки из диплоидного состояния в гаплоидное.

Будущие гаметы на стадии созревания делятся дважды. Клетки, приступающие к мейозу, содержат диплоидный набор уже удвоенных хромосом. В процессе двух мейотических делений из одной диплоидной клетки образуются четыре гаплоидные.

Мейоз состоит из двух последовательных делений, которым предшествует однократное удвоение ДНК, осуществлённое на стадии роста. В каждом делении мейоза выделяют четыре фазы, характерные и для митоза (профазу, метафазу, анафазу, телофазу), однако они отличаются некоторыми особенностями (рис. 65).

Профаза первого мейотического деления (профаза I ) значительно длиннее, чем профаза митоза. В это время удвоенные хромосомы, каждая из которых состоит уже из двух сестринских хроматид, спирализуются и приобретают компактные размеры. Затем гомологичные хромосомы располагаются параллельно друг другу, образуя так называемые биваленты или тетрады, состоящие из двух хромосом (четырёх хроматид). Между гомологичными хромосомами может произойти обмен соответствующими гомологичными участками (кроссинговер), что приведёт к перекомбинации наследственной информации и образованию новых сочетаний отцовских и материнских генов в хромосомах будущих гамет (рис. 66).

К концу профазы I ядерная оболочка разрушается.

В метафазе I гомологичные хромосомы попарно в виде бивалентов, или тетрад, располагаются в экваториальной плоскости клетки, и к их центромерам присоединяются нити веретена деления.

В анафазе I гомологичные хромосомы из бивалента (тетрады) расходятся к полюсам. Следовательно, в каждую из двух образующихся клеток попадает только одна из каждой пары гомологичных хромосом – число хромосом уменьшается в два раза, хромосомный набор становится гаплоидным. Однако каждая хромосома при этом всё ещё состоит из двух сестринских хроматид.

Рис. 66. Перекрёст хромосом и обмен гомологичными участками

В телофазе I образуются клетки, имеющие гаплоидный набор хромосом и удвоенное количество ДНК.

Спустя короткий промежуток времени клетки приступают ко второму мейотическому делению, которое протекает как типичный митоз, но отличается тем, что участвующие в нём клетки гаплоидны.

В профазе II разрушается ядерная оболочка. В метафазе II хромосомы выстраиваются в экваториальной плоскости клетки, нити веретена деления соединяются с центромерами хромосом. В анафазе II центромеры, соединяющие сестринские хроматиды, делятся, хроматиды становятся самостоятельными дочерними хромосомами и расходятся к разным полюсам клетки. Телофаза II завершает второе деление мейоза.

В результате мейоза из одной исходной диплоидной клетки, содержащей удвоенные молекулы ДНК, образуется четыре гаплоидные клетки, каждая хромосома которых состоит из одиночной молекулы ДНК.

При сперматогенезе на стадии созревания в результате мейоза образуется четыре одинаковые клетки – предшественники сперматозоидов, которые на стадии формирования приобретают характерный вид зрелого сперматозоида и становятся подвижными.

Мейотические деления в овогенезе характеризуются рядом особенностей. Профаза I завершается ещё в эмбриональном периоде, т. е. к моменту рождения девочки в её организме уже имеется полный набор будущих яйцеклеток. Остальные события мейоза продолжаются только после полового созревания женщины. Каждый месяц в одном из яичников у женщины продолжает развитие одна из остановившихся в своем делении клеток. В результате первого деления мейоза образуется крупная клетка – предшественник яйцеклетки и маленькое, так называемое полярное, тельце, которые вступают во второе деление мейоза. На стадии метафазы II предшественница яйцеклетки овулирует, т. е. выходит из яичника в брюшную полость, откуда попадает в яйцевод. Если происходит оплодотворение, второе мейотическое деление завершается – образуется зрелая яйцеклетка и второе полярное тельце. Если слияния со сперматозоидом не происходит, не закончившая деление клетка погибает и выводится из организма.

Полярные тельца служат для удаления избытка генетического материала и перераспределения питательных веществ в пользу яйцеклетки. Спустя некоторое время после деления они погибают.

Значение гаметогенеза. В результате гаметогенеза образуются половые клетки, содержащие гаплоидный набор хромосом, что позволяет при оплодотворении восстанавливать число хромосом, характерное для вида. В отсутствие мейоза слияние гамет приводило бы к удвоению числа хромосом у каждого последующего поколения, возникающего в результате полового размножения. Этого не происходит благодаря существованию особого процесса – мейоза, во время которого диплоидное число хромосом (2n ) сокращается до гаплоидного (1n ). Таким образом, биологическая роль мейоза заключается в поддержании постоянства числа хромосом в ряду поколений вида.

Вопросы для повторения и задания

1. Сравните строение мужских и женских половых клеток. В чём их сходство и отличия?

2. От чего зависит размер яйцеклеток? Объясните, почему яйцеклетки млекопитающих – одни из самых мелких.

3. Какие периоды выделяют в процессе развития половых клеток?

4. Расскажите, как протекает период созревания (мейоз) в процессе сперматогенеза; овогенеза.

5. Перечислите отличия мейоза от митоза.

6. В чём заключается биологический смысл и значение мейоза?

Подумайте! Выполните!

1. Организм развился из неоплодотворённой яйцеклетки. Являются ли его наследственные признаки точной копией признаков материнского организма?

2. Объясните, почему для обозначения мужских половых клеток существует два термина: спермии (например, у покрытосеменных растений) и сперматозоиды.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Повторите и вспомните!

Человек

Половые клетки. Образование сперматозоидов у мужчин начинается с момента полового созревания. Длительность всех четырёх фаз сперматогенеза составляет около 80 дней. За всю жизнь в организме мужчины образуется огромное количество сперматозоидов – до 10 10 .

Несмотря на то что в женском эмбрионе закладывается очень много яйцеклеток, созревают из них лишь немногие. За репродуктивный период, т. е. когда женщина способна к деторождению, окончательно формируются около 400 яйцеклеток.

Развитие половых клеток (овогенез и сперматогенез) определяет здоровье будущего поколения. Курение, употребление алкогольных напитков, наркотических препаратов может оказать необратимое влияние на формирующиеся половые клетки, что в дальнейшем приведёт к бесплодию или рождению ребёнка с наследственными или врождёнными нарушениями.

Половые клетки (гаметы) развиваются в половых (генеративных) органах и играют важнейшую роль: обеспечивают передачу наследственной информации от родителей к потомкам. При половом размножении в результате оплодотворения происходит слияние двух половых клеток (мужской и женской) и образование одной клетки - зиготы , последующее деление которой приводит к развитию дочернего организма.

Обычно в ядре клетки содержатся два набора хромосом - по одному от одного и другого родителя - 2n (латинской буквой "n" обозначают одинарный набор хромосом). Такая клетка называется диплоидной (от греч. diploos - "двойной" и eidos - "вид"). Можно предположить, что при слиянии двух ядер во вновь образовавшейся клетке (зиготе) будут находиться уже не два, а четыре набора хромосом, которые при каждом последующем появлении зигот будут снова удваиваться. Представьте себе, какое количество хромосом накопилось бы тогда в одной клетке! Но такого в живой природе не происходит: число хромосом у каждого вида при половом размножении остается постоянным. Связано это с тем, что половые клетки образуются путем особого деления. Благодаря этому в ядро каждой половой клетки попадают не две (2n), а только одна пара хромосом (1n), т. е. половина из того, что было в клетке до ее деления. Клетки с одинарным набором хромосом, т. е. содержащие только половину каждой пары хромосом, называются гаплоидными (от греч. haploos - "простой", "одиночный" и eidos - "вид").

Процесс деления половых клеток, в результате которого в ядре оказывается вдвое меньше хромосом, называют мейозом (греч. meiosis - "уменьшение"). Уменьшение вдвое числа хромосом в ядре (так называемая редукция) происходит при формировании и мужских, и женских половых клеток. При оплодотворении путем слияния половых клеток в ядре зиготы вновь создается двойной набор хромосом (2n).

Мейоз имеет большое значение в живом мире. В процессе мейоза (в отличие от митоза) образуются дочерние клетки, которые содержат в два раза меньше хромосом, чем родительские клетки, но благодаря взаимодействию хромосом отца и матери всегда обладают новыми, неповторимыми комбинациями хромосом. Эти комбинации у потомства выражаются в новых сочетаниях признаков. Появляющееся множество комбинаций хромосом увеличивает возможность вида вырабатывать приспособления к изменяющимся условиям окружающей среды, что очень важно для эволюции.

С помощью мейоза образуются половые клетки с меньшим набором хромосом и с качественно иными генетическими свойствами, чем у родительских клеток.

Мейоз, или редукционное деление, - это сочетание двух своеобразных этапов деления клетки, без перерыва следующих друг за другом. Их называют мейозом I (первое деление) и мейозом II (второе деление). Каждый этап имеет несколько фаз. Названия фаз такие же, как фаз митоза. Перед делениями наблюдаются интерфазы. Но удвоение ДНК в мейозе происходит только перед первым делением.

В первой интерфазе (предшествующей первому делению мейоза) наблюдается увеличение размеров клетки, удвоение органоидов и удвоение ДНК в хромосомах.

Первое деление (мейоз I) начинается профазой I , во время которой удвоенные хромосомы (имеющие по две хроматиды) хорошо видны в световой микроскоп. В этой фазе одинаковые (гомологичные ) хромосомы, но происходящие из ядер отцовской и материнской гамет, сближаются между собой и "слипаются" по всей длине в пары. Центромеры (перетяжки) гомологичных хромосом располагаются рядом и ведут себя как единое целое, скрепляя четыре хроматиды. Такие соединенные между собой гомологичные удвоенные хромосомы называют парой или бивалентом (от лат. bi - "двойной" и valens - "сильный").

Гомологичные хромосомы, составляющие бивалент, тесно соединяются между собой в некоторых точках. При этом может происходить обмен участками нитей ДНК, в результате которого образуются новые комбинации генов в хромосомах. Этот процесс называют кроссинговером (англ. crossingover - "перекрест"). Кроссинговер может приводить к перекомбинации больших или маленьких участков гомологичных хромосом с несколькими генами или частей одного гена в молекулах ДНК.

Благодаря кроссинговеру в половых клетках оказываются хромосомы с иными наследственными свойствами в сравнении с хромосомами родительских гамет.

Явление кроссинговера имеет фундаментальное биологическое значение, так как увеличивает генетическое разнообразие в потомстве.

Сложностью процессов, происходящих в профазе I (в хромосомах, ядре), обусловливается наибольшая продолжительность этого этапа мейоза.

Половое размножение существует почти у всех растений и животных. Оно связано с образованием высокоспециализированных половых клеток - гамет. Гаметы формируются из диплоидных клеток путем специального типа клеточного деления - мейоза, в результате которого в клетках исходное число хромосом уменьшается вдвое (из диплоидного становится гаплоидным).

Несмотря на принципиальное сходство гаметогенеза у самых различных видов организмов, конкретные формы мейоза чрезвычайно разнообразны.

Мужские гаметы созревают в мужских половых железах - семенниках; этот процесс называется сперматогенезом. Женские гаметы созревают в яичниках в процессе овогенеза. В половых железах различают: зону размножения, зону роста и зону созревания; в зоне созревания гаметы окончательно формируются путем мейоза.

Мейоз происходит в результате двух последовательных делений родоначальной диплоидной клетки. Каждое из них включает четыре фазы. Все фазы первого мейотического деления обозначают цифрой I, а все фазы второго деления - цифрой II. Передпрофазой I в клетках, удваивается ДНК и в мейоз клетки вступают с хромосомным набором 2n4с.

В профазе I хромосомы вначале имеют вид тонких нитей, а затем утолщаются. Гомологичные хромосомы сближаются, в пунктах касания они перекрещиваются и обмениваются гомологичными участками- этот процесс называется кроссинговером (и представляет один из источников генотипической комбинативной изменчивости). Каждая хромосома в результате самоудвоения состоит из двух хроматид и называется унивалентой, а после сближения двух гомологичных хромосом (двух унивалент) образуются тетрады (биваленты). Как и в профазе митоза, в клетке в этот период формируется веретено деления, центриоли отходят к полюсам, оболочка ядра распадается, а тетрады движутся к центру клетки.

В метафазе I тетрады выстраиваются в плоскости экватора, гомологичные хромосомы в области центромер отходят друг от друга, оставаясь соединенными в области плеч. Нити веретена прикрепляются к центромерам гомологичных хромосом. Клетка вступает в третью фазу - анафазу I, во время которой нити веретена увлекают униваленты к противоположным полюсам. При этом одна из двух гомологичных хромосом случайно оказывается на одном полюсе, вторая - на другом. Именно в этот период происходит уменьшение вдвое (редукция) числа хромосом и их случайное перераспределение в будущих гаметах. В заключительной фазе клетка вступает в телофазу I. Таким образом, в итоге мейоза образуются две клетки, содержащие лишь по одной из двух гомологичных хромосом, каждая из которых состоит из двух хроматид. Хромосомы в результате кроссинговера обмениваются своими участками и несут, таким образом, перекомбинированный наследственный материал. Телофаза I длится недолго, и клетка переходит в интерфазу (краткую по времени), после которой наступает второе мейотическое деление. Во время интерфазы в отличие от митоза в клетках не происходит синтеза ДНК.

В профазе II по периферии ядра располагаются нитевидные хромосомы - униваленты, образуется веретено деления, хромосомы, приближаются к плоскости экватора и клетка вступает метафазу II. В анафазе II хроматиды расходятся и увлекаются нитями веретена от плоскости экватора к противоположным полюсам. Вслед за этим наступает телофаза II, во время которой хромосомы истончаются, образуя нити, и у полюсов формируются ядра дочерних клеток. В итоге из двух клеток мейоза I в телофазе мейоза II образуются четыре дочерние зрелые гаметы, жаждая из которых несет газплоидное число хромосом. Описанный процесс типичен для формирования мужских гамет. Образование женских половых клеток идет аналогично, но при овогенезе развивается лишь одна зрелая яйцеклетка, а три мелких редукционных тельца впоследствии отмирают.

Мейоз под микроскопом

Биологическое значение мейоза состоит в том, что:

1) образуются хромосомы обновленного генетического состава благодаря кроссинговеру между гомологичными хромосомами;
2) достигается наследственная разнородность гамет, так как во время первого мейотического деления из дары гомологичных хромосом в одну из двух гамет отходит материнская хромосома, в другую - отцовская;
3) после оплодотворения гаплоидные гаметы (1n1с) от отца и матери создают диплоидное ядро зиготы с числом хромосом, присущим данному виду.

Процессы сперматогенеза и овогенеза в принципе сходны, но между ними имеются и различия. В результате сперматогенеза образуется четыре сперматозоида, аовогенез завершается образованием одной яйцеклетки. Это обусловлено тем, что при первом и втором делениях созревания яйцеклетки не делятся пополам, а отделяют маленькие направительные, или редукционные, тельца. Направительные тельца несут полноценные хромосомные наборы, но практически лишены цитоплазмы и вскоре погибают. Биологический смысл образования этих телец заключается в необходимости сохранения в цитоплазме яйцеклетки максимального количества желтка, потребного для развития будущего зародыша.

Таблица Деление клеток (исходная клетка 2п 4с (n - хромосомы, с - хроматиды))

Тип деления Фазы Набор хромосом в
результате деления
(n - хромосомы,
с - хроматиды)
Число и качество
клеток, образую
щихся в резуль
тате деления
Клетки, где происходит
деление
Распро-странение среди
организмов
Митоз
(непрямое
деление)
Интерфаза
Профаза
Метафаза
Анафаза
Телофаза
2п 2с (дипло-идный), хромосомы
однохрома-тидные
Две дипло-идные
Сомати-
ческие (клетки
тела)
Все животные и расти
тельные организмы, кроме бактерий и синезеленых (прокариот)
Мейоз:
мейоз I (ре
дукцион-ное
деление)

Мейоз II
(митоти-ческое
деление)

Интерфаза
Профаза I
Метафаза I
Анафаза I
Телофаза I

Метафаза II
Анафаза II
Телофаза II

In (гапло-идный), хромосомы
двухро-
матидные

1n 1с (гапло-идный), хромосомы
однохро-матидные

Две гапло-идные

Две гапло-идные

Всего: четыре
гапло-идные
клетки

Половые клетки животных: при овогенезе
образуются четыре клетки: одна яйцеклетка и три направи-тельных тельца (отмира-
ющие); при
сперма-
тогенезе все
клетки образуют сперма-
тозоиды.
Сяюрообра-зующие
клетки растений: у семенных растений из четырех крупных спор три
отмирают, одна остается; мелкие споры все
остаются
Все животные и растения, кроме прокариот

Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении